

HIA

$$
2(64 e+t+1+1)
$$

$C L A V I U S$ s

 COMMENTARY n O N THE SPHERICKS OFTHEODOSIUS Tripolite: OR, Spherical Elements,

Neceffary in all Parts of Mathematicks, wherein the Nature of the Sphere is confidered.

Made Englifb by EDM ${ }^{\text {d }}$. St oneo

$$
L O N D O N \text {, }
$$

Printed for \mathcal{F}. Senex, at the Globe in Salifoury-Court , W. Taylor, at the Ship in Pater-Nofter-Row; 'and F. Sifson, Mathematical Infrument-maker at the Spbere, the Corner of Beaufort Buildings in the Strand. 1721.

RB QA31.T56 $1701 x$
Acc. $80-191$

Clavius's Preface.

Ecaufe Geographers and Hiftorians have deforibed two Cities; the one in Phoenicia, and the other in Africa, both called by the Name of Tripolis, Writers are not cert ain whether Theodofius was a Phoenician, or an African. They differ alpo about the Time wherein be flourished: But it is very probable, be liv'd about the Time of Pompey the Great: Because Strabo fays, be was Cotemporary with Afclepiades the Pbyfician, in Bythinia, who, if we may credit Pliny, flawrifted in the Time of Pompey the Great. He wrote various foal MaA 2 theme-

The Preface.
thematical Tracts, as De Habitationibus, De Noctibus, \& Diebus, and likewise the fe three learned Books of Sphericks; in which be has demon. ftrated diver fe Properties of the Sphere, the Knowledge of which is abolutely neceffary in Aftronomy. For without there Astronomy could not maintain its Dignity. Likewise Dialling very much depends on the Knowledge of the e Sphericks; as alSo they are of great USe in rightly underftanding of Geography, and Projective, \&c.

And because there are extant two V Versions of Theodofius's Sphericks; the one being John Pena's, copy'd from the Original Greek; and the other Maurolycus's, taken from the Tradetion of the Arabians : I think it proper to follow the former, in which are contained fifty Propofitions, and lay down various Scholia, by which we demontrate several neceffary and plea-

The Preface.

pleasant Theorems, omited by Theodofius, but added by the Arabians. We did not think it proper in the Demonfrations to follow the Words of the Greek Book, but the Sene, that So the Demonftrations might be more conspicuous. We have likervife here and there added certain Corollaries, Scholia, and Lemmata, to be uSed when there is Occafion for them. Moreover, we have mofly neglected the Figures in the Greek Copy, because those in Maurolycus's are more proper and eafier to be underftood. Lastly, that the Course of the Demonitrasion might not be interrupted, zee have cited the Propofitions of Euclid, and of the fe Books in the Marg in.

The Citations are thus to be underfoot.

1. 2. The firs Prop. of lib. 1. Encl.

Cor. 16. 3. The Corollary of Prop. 16. Lib. 3. Euct. 4 . of this. The $4 t 3$ Prop. of this Book.
12. 2. of this. Prop. 12. of lib. 2, of this Work.

Adler-

Advertilement.

A LL Sorts of Matbematical Inftruments, both for Sea and Land, Made and Sold by fonatban Sifson, Mathematical Inftrument-maker at the Sphere, the Corner of Beaufort-Buildings in the Strand.

THE

$$
[1]
$$

THE

Spherical Elements

0 F

THEODOSIUS.

BOOK I.

DEFINITIONS.
I.

Sphere is a folid Figure contain'd under one Superficies, to which from one Point withs in it, all Right Lines that be drawn, are equal between themfelves.

II,
The aforefaid Point, is called the Center of the Sphere.

The A xis of a Sphere, is a Right Line drawn thro the Center, and terminated on bothSides by

The Sphericks of Theod ofius. Book I the Superficies of the Sphere, about which the Sphere revolves.

IV.

The Poles of a Sphere, are the Extremes of its Axis.

$$
\mathrm{V} .
$$

The Pole of a Circle in a Sphere, is a Point in its Superficies, from which all Right Lines drawn to the Circumference of the Circle are equal to one another.

S C H OLI UM.

There is yet added, in the Greek Verfion, another Definition, explaining what is meant by the Similar Inclination of Ploms. But becaufe the Inclination of Plans is explained by Euclid, in Lib. II. Def. 6.and their Similar Inclination in Def. 7. of the fane Book, I have bere omitted it, and inftead thereof put the following Definition, not nueh innlike Def. 4. Lib. 3: Euclid.

VI.

Circles in a Sphere, are faid to be equally diftant from the Center, when Perpendiculars, let fall from the Center of the Sphere, to the Plans of the Circles, are equal between themfelves: And that Circle is faid to be furtheft diftant, when the Perpendicular drawn to its Plan is greateft.

THEO. I. PROP. I.

If the Supeificies of a Spbere be cut by any Plan, the Line made in its Superficies, is the Circumference of a Circle.
Fig. I: T ET the Sphefical Superficies $A B C$, whore Center is D, be cut by any Plan, making in the Superficies of the

Book I. The Sphericks of Theodofius.

Sphere the Line BEFCG. I fay BEFCG, is the Circumference of a Cirele. For, firft let the Plan pafs thro' the Center D of the Sphere, fo that D may be in the faid Plan, in which, from D to the Section BEFCG, draw any number of right Lines, as $\mathrm{DE}, \mathrm{DF}, \mathrm{DG}$. Therefore becaufe all thefe Lines, be they never fo many, drawn from the Center of the Sphere to its Superficies, are equal to each other, the Line BEFCG (by Def. is. lib. I. Euclid,) will be the Circumference of a Circle, whofe Center is D, the fame as the Center of the Sphere.

2dly. Let the cutring Plan not pafs thro' the Center of the Sphere, (a) and draw from D, the Centre of the Sphere, to the Plan, the Perpendicular DH; draw likewife from H , right Lines, as HE, HF, any how, to the Line BEFCG, and join the right Lines DE, DF. Therefore becaufe the Angles DHE, DHF, are right ones (from Def.3. lib. in. Euclid,) (b) the Square (b) 47. I. of ED , is equal to the Squares of DH, HE, and the Square of DF, to the Squares of DH, HF : But the Squares of $D E, D F$, are equal to each other, becaure the right Lines DF, DE, drawn from the Center of the Sphere to its Superficies, are equal: Therefore the Squares of DH, HE together, are equal to the Squares of DH, HF together. From whence taking away the common Square of the right Line DH , the remaining Squares of the right Lines HE, HF, are equal to one another, and accordingly the right Lines HE, HF, will be equal to each other. In the fame manner may it be demonftrated, that all right Lines drawn from H , to the Line BEFCG, are equal between themfelves, and to the faid two Lines HE, HF. Therefore the Line BEFCG, will be the Circumference of a Circle, (from Def. 15. lib. I. Euclid,) whofe Center is the Point H_{2} in which the Perpendicular falls. Q, E. D.

COROLLART.

Therefore if the cutting Plan paffes thro' the Center of a Sphere, there will be a Circle made, having the fame Center with the Center of the Sphere. But if it does not pafs thro' the Center of the Sphere, there will be a Circle made, not having the fance Center as that of the Sphere. But having that Point for its Center, in which the Perpendicular, drawn from the Sphere'e Ce n ter to the cutting Plan, falls.

That is,

The Center of a Sphere, is the fame with the Center of a Circle paffing thro' the faid Center, and a Perpeudicular drawn from the Center of a Sphere, to the Plan of a Circle not paffing thro' the Center of the Sphere, falls in the Center of the Circle : Becaufe the Point Hin which the Perpendicular DH, falls, has been proved to be the Center of the Circle.

PROB.I. PROP. II.

To find the Center of a given Spbere.

Figg 3. T^{T} is required to find the Center of the Sphere $A B C D$. Cut its Superficies by any Plan, whofe Seetion fuppofe
(a) r. of
this.
(b) r. 3. the Circle BDE, paffes thro' the Center of the Sphere,
(c) Cor.1. the point F, (c) will be alfo the Center of the Sphere.
of this. But if the Circle does not pafs thro' the Center of the (d) 12.11. Sphere, (d) raife from F, to the Plan of the Circle BDE, the Perpendicular FG, which produced both ways to the Superficies of the Sphere in the Points A, B, and being bifected in the Point G. I fay G, is the Center of the Sphere: For if it is not, let H be the Center, cutting all the Diameters in half, which will not be in the Line A C, becaufe that is only bifected in the Point (e) infir. G, but without it. (e) Draw from H the Center of the Sphere, to the Plan of the Circle BDE, the Perpen-
(f) 6. 11 . dicular HI , (f) which will be parallel to FG; and accordingly will not fall in the Point F: for then two Parallels GF, HI, would meet in the Point F, which is impoffible. But becaufe the Perpendicular drawn from the Center of the Sphere to the Plan of the Circle (g) Cor. r. BDE, (g) falls in its Center, I will be the Center of of this: the Circle BDE. But likewife F, from Confruction, is the Center of the fame Circle; which is abfurd : for

Book I. The Sphericks of Theodofius.

 the fame Circle hath only one Center, therefore no other Point befides G, will be the Center of the Sphere. Q. E. F.$$
C \otimes R O L L A R Y \text {. }
$$

From hence it is manifeft, that if there is a Circle in a Sphere not paffing thro' the Center of the Sphere, from whofe Center is raifed a Perpendicular to its Plan, the Center of the Sphere, will be in that Perpendicular, for it has been demonftrated that the Point G bifecting the Perpendicular AC, is the Center of the Sphere.

THEO. II. PROP. III.

A Spbere dotb not touch a Plan, by wbich it is not cut, in mare Points than One.

FOR if it can be, let a Sphere touch a Plan, by which Fig. 4: it is noticut, in more Points than One, as in A, B. now (a) C the Center of the Sphere, being found, draw (a) \mathbf{z} of the right Lines CA, CB : and thro CA, CB draw a this. Plan making in the Superficies of the Sphere (b) the (b) of Circumference of the Circle ABD, (c) and touching ${ }_{\text {this. }}$ the right Line EABF in the Plan. Therefore becaufe (c) 3.15 . the touching Plan, in which the right Line EABF is, does not cut the Sphere, neither the Circle ADB in its Superficies,fit's manifeit the right Line EABF, will not cut the Circle ABD. Therefore the right Line ABD, will fall quite without the Circle. But becaufe the two affumed Points A, B, are in the Circumference of the Circle $\mathrm{ABD},(d)$ the fame right Line AB , drawn from the (d) 2.3. Point A to the Point B, will fall quite within the Circie ABD ; which is abfurd. Therefore a Sphere cannot touch a Plan, by which it is not cut, in more Points than One. Q. E. D.

COROLLARY.

Hence, if two Points are affigned in the Superficies of a Sphere, a right Line joyning them will fall within the Sphere. (e) Becaufe it falls within a (ircle whofe Circumference is in the Sphere's Superficies.

THEO. III. PROP. IV.

If a Spbere toucbes a Plan, which does not cut it, a right Line drazen from the Center of the Sphere to the Point of Contact, will be perpendicular to the Plan.

Fig. 5. ET a Sphere touch a Plan, not cutting of it, in the 6) 2. of Point $\mathrm{A}:(a)$ and the Center B of the Sphere being thers. found, draw from it to the Point of Contact A, the Line BA. I fay the Line BA is perpendicular to the faid Plan. For draw two Plans any how thro' the Line
(b) I. of this.
(c) 3.1 II
(d) Cor. AB mutually cutting each other, which (b) make the Circumferences ACDE, AFDG, of Circles, in the Superficies of the Sphere, and (c) touching the right Lines HAI, KAL, in the Plan. Therefore becaufe both the Circles ACDE, AFDG, pafs thro' the Center B of the 1. of this. Sphere, (d) B will be the Center of them both. Again,
(e) 18. becaufe the Plan tonches the Sphere, and does not cut it, neither will the right Lines HAL, KAL, which are in it, cut the fame, and accordingly neither the Circles ACDE, AFDG, exifting in the Sphere's Superficies. Therefore the right Line HAI, touches the Circle $A C D E$, in the Point A, and the right Line KAL, the Circle AFDG, in the fame Point A. (e) Therefore the right Line BA, is both perpendicular to HAI, and KAL. Whence the right Line BA, will be perpendicular to the Plan of Contact, drawn thro the right Lines $\mathrm{HAI}_{2} \mathrm{KAL}_{\text {, }}$. R. E. D.

Book I. The Spbericks of Thedofius

THE. IV. PROP. V.

If a Sphere touches a Plan, which does not cut it, and from the Point of Contact is raised a right Line perpendicular to the Plan, the Center of the Sphere will be in the said Perpendicular.

LET the Sphere ABCD, touch the Plan EF, which Fig. 6. does not cut it, in the Point C, and let there be (a) (a) I2. if. raised to the Plan EF, the Perpendicular CA. I fay the Center of the Sphere is in the right Line AC. For if it is not, let the Center of the Sphere be without the Line AC, and draw a right Line from G to C, (b) (b) 4 of which will be perpendicular to the Plan AC. There-tbis. fore from the fame Point C to the fame Plan EF are two Perpendiculars drawn; which is abfurd: for two right Lines cannot (r) be railed at right Angles in a (c) I3. I fo given Plan, from a Point given in it. Q. E. D.

THE. V. PROP. VI.

The greatef Circles drawn in a Sphere, are thole palling taro' its Center: And those which are equally diftant from the Center, are equal: But those which are further diftant from the Center are lefter. And contrary. wife, great Circles in a Sphere oafs tho' its Center: Thole that are equal are equally diftant from the Center: But those are leffer, that are further from the Center of the Sphere.

LET the Circle AD, pass thro the Center G, of the Sphere $A B C D E F$, and the others $B C, E F$ not tho the Center. I fay AD is a Circle the greateft of all, $5 \sigma^{\circ} \mathrm{c}$.
(a) Ir. II. For (a) draw the Perpendicnlars GH, GI, from the Center G, to the Plans of the Circles BC, FE,
(b) Cor. I. which (b) will fall in their Centers ; fo that $\mathrm{H}_{\text {, }}$, of this. I, will be the Centers of the Circles BC, EF: (c)
(c) Cor. I. but G the Center of the Sphere, is alfo the Cenof this. ter of the Circle, $A D$, paffing thro' the Sphere's Center. If therefore from G, H, I, to the Superficies of the Sphere are drawn the right Lines, GD, HC, IE, thefe will be the Semidiameters of the Circles AD, BC, FE. Alfo join the right Lines GC, GE. Therefore becaufe in the Triangle GHC , the Angle H , is a right
4) 47. I. one (per Def.3. lib. II. Euclid) (d) the Square of GC will be equal to the Squares of GH, HC. Whence taking away the common Square of the right Line GH , the Square of GC, will. be greater than the Square of HC ; and therefore likewife the right Line GC, that is, GD, (for GC, GD are drawn fram the Center of the Sphere to its Superficies) is greater thian the right Line HC. Whence the Circle AD having a greater Semidiameter than the Circle, BC will be greater than the Circle BC.By the fame Way of Reafoning we may demonftrate, that the Gircle AD is greater than any other not drawn thro the Center. Therefore the Circle AD, is the greateft.

Now let the Circles BC, EF, be equally diftant from the Center G, that is, let the Perpendiculars GH, GI, be equal, from Def. 6. of this Book. I fay the Circles BC, EF , are equal. For when the right Lines GC, GE, falling from the Center of the Sphere to its Superficies, are
(c) 47. I. equal, and accordingly their Squares equal ; (e) and alfo the Square of GC equal to the Squares of $\mathrm{GH}, \mathrm{HC}_{\text {s }}$ and the Square of GE equal to the Squares of GI, IE; the Squares of GH, HC together, will be equal to the Squares of GI, I , together. Therefore taking away the equal Squares of the right Lines GH, GI, (for thefe Lines are fuppofed equal) the remaining Squares of the right Lines HC, IE, will be equal, and accordingly alfo the right Linés HC, IE, will be equal: But when they are the Semidiameters of the Circles BC, FE, thele Circles will likewife be equal.

If one of the Circles, viz. BC, is placed further diftant from the Center than the other FE, that is, if the perpendicular GH be fuppofed greater than GI, we

Book I. The Spbericks of Theodofius.

may demonftrate almoft in the fame manner, that the Circle BC is leffer than the Circle FE, for fince the Squares of $\mathrm{GH}, \mathrm{H}, \mathrm{C}$ have been demonftrated to be equal to the Squares of GI, IE; If the unequal Squares. of the unequal right Lines GH, GI are taken away, (the Square of GH being greater than the Square of CI ,) the remaining Square of the right Line HC , will be leffer than the remaining Square of the right Line IE; and accordingly alfo the right Line HC, will be leffer than the right Line IE. And therefore the Circle BC, will be leffer than the Circle FE.

Now let AD be the greateft Circle of all. I fay it paffes thro' G, the Center of the Sphere. For if it do not pafs thro the Center, fome other Circle paffing thro' the Center, will be greater than the Circle AD, not paffing thro the Center, as has been demonftrated in this Propofition. Therefore AD, is not the greateft Circle: Which is abfurd. For it is pofited the greatef. Therefcre it paffes thro' G, the Center of the Sphere.

Again, let the Circles BC, FE, be equal. I, fay they are equally diftant from G, the Center of the Sphere. For the Fignre being confructed as before, the Semidiameters HC, IE, will be equal. And becaure the Squares of GH, HC, are equal to the Squares of $\mathrm{GI}, \mathrm{IE},(f)$ as $(f) 47$. If has been demonftrated; the equal Squares of the equal Lines HC, IE, being taken away, the remaining Squares, of the right Lines GH, GI, will be equal; and accordingly alfo the right Lines GH , GI, will be equal, which when they are perpendicular, from Confruction, to the Plans of the Circles BC, FE, the Circles, BC, FE, will be equally diftant from the Center G, from Def. 6. of this Book,

Lafly, If one of the Circles BC, FE, viz. BC , be leffer than the other Circle FE, it may in the fame manner, be demonftrated, that the Perpendicular GH, is greater than the Perpendicular GI. For becaufe the Squares of GH, HC, have been proved to be equal to the Squares of GI, IE; and the Square of HC , being leffer than the Square of IE; (becaufe from the Hypothefis, the Semidiamiter HC, of the leffer Circle, is leffer than the Semidiameter IE, of the greater Circle) the remaining Square of theright Line GH , will bcgreater than the remaining Square of the right Line GI ; and therefore alfo the right Line GH , will be greater than GI. Wherefore fince GH, GI, are perpendicular, from Conftruction, to the Plans of the Circles, the leffer Circle BC, will be further diftant (Def. 6. of this Book) from the Center G, than the greater Circle FE. Q. E. D.

THEO. VI. PROP. VII.

If there is a Circle in a Spbere, and from the Center of the Sbere to the Center of the Circle a rigbt Line is drawn; the Said Line, will be Perpendicular to the Plan of the Circle.

Fig. 8. IN the Sphere $A B C$, whore Center is D , let there be a Circle, as, BFCG, whofe Center is E, and let the right Line DE, comneet their Centers D, E: I fay the right Line $D E$, is perpendicular to the Plan of the Circle BFCG. For having any how drawn the two Diameters BC, FG, in the Circle, draw from their Extremes, to D the Center of the Sphere, the right Lines $\mathrm{BD}, \mathrm{CD}, \mathrm{FD}, \mathrm{GD}$, which will be all equal to one another, as being drawn from the Center of the Sphere to its Superficies: alfo BE, CE, FE, GE, the Semidiameter of the Circle BFCG, are equal. Therefore the two Triangles DEB, DEC, have two Sides DE, EB, equal to two fides $D E, E C$, as alfo the Bafe $D B$ equal
(a) 8. I. to the Bare DC ; whence the Angles $\mathrm{DEB}, \mathrm{DEC},(a)$ are equal and therefore right ones. Wherefore the right Line DE, is Perperidicular to the right Line BC.
In the fame manner may it be proved, that the right Line DE, is Perpendicular to FG. (b) Therefore alfo it
(b) 4. in. will be Perpendiculat, to the Plani of the CircleBFCG, drawn thro the right Lines $B C, F G, Q$ E. D.

THEO. VII. PROP. VIII:

If there is a Circle in a Sphere, and from the Center of the Splbere to the Circle be drawn a Perpendicular: The faid Perpendicular produced botb ways, weill fall in the Poles of that Circle.

IN the Sphere ABCD, whofe Center is E, let there be Fig.9.io. the Circle BGDH, in the Plan of which from the (a) II.II: Sphere's Center let there be (a) drawn a Perpendicular, as EF, which both ways produceed falls in the Superficies of the Sphere, at the Points A, C. I fay, A, C, are the Poles of the Circle BGDH. For the Perpendicular EF, falls in the Center of the Circle BGDH, and therefore F, will Be the Center of the Circle. Now if the Circle BGDH, is drawn thro' the Center of the Sphere, (b) the Center E of the Sphere, will be the (b) Corir: fanse, with the Center F of the Circle, (c) from which of this. to the Plan of the Citcle let the Perpendicular AC be (c) 12.15 . raifed. Therefore the Diameters BD, GH , being any how drawn, draw from their Extremes, right: Lines to the Points A, C. And becaure AF is Perpendicular to the Plan of the Circle BGDH, all the Angles made at F , will be right ones (from Def. 3. Lib. 1r. Euclid.) Wherefore the two Triangles AFB, AFH, hiave two fides AF, FB, equal to twa fides AF, FH, which comprehend equal Angles, viz. right ones. (d) Thereföre (d) 4. Is the Bafes AB, AH are equal. One may in the fame manner, prove, that the right Lines $A D, A G$, or any others drawn from A to the Circumference of the Circle BGDH , are equal between themfelves, and to the right Lines AB, AH. Therefore the P oint A , is the Pole of the Circle BGDH, from Def 5. of this Book. By the fame way of reafoning it may be demonftrated that C is alfo the Pole of the fame Circle. Q. E. D.

SCHOLIUM.

Abstract

In the Verfion of Maurolycus are annexed the two following Theoreins, added by the Arabians.

I.

If there is a Circle in a Sphere, from whofe Center is raifed a Perpendicular to the Plan of the Circle: This Perpendicular produced both ways, will fall in both the Poles of the Circle.

In the latt Figure from F, the Center of the Circle (a) I2.II. $B G D H$, (a) raife the right line $F A$; perpendicular to the Plan of the Circle, custting the Supperficies of the Sphere, in the Points $A, C .1$ fag A, C, are the Poles of the Circle $B G D H$. For from Def. 3. lib. 11. Eu-: clid, all the Angles whichthe right Line AFmakes, at (b) 4. I. F, are right ones. (b) Wherefore, as before, the Lines $A B, A D, A G, A H, \& c$. are equal to each other \&c. (c) Cor. 2 Or otherwife thus. (i) Becaufe theis Perpendicular of this. FA palfes thro' the Center E, of the Sphere, the right: Line EF, drawn from E, the Center of the :Sphere, will be Perpendicular to the Plan of the Circle BGDH. (d) Wherefore, as has been demionftrated, it falls inn the Pole of the fame. Circle.

II.

If there be a Circle in a Sphere, and from one of its Poles is drawn a right Line thro it's Center; this Line, will be Perpendicular to the Plan of the Circle, and produced, will fall in the other Pole.

Still, in tbe fame Figure, from A, the Pole of the Circle $B G D H$, draw the rigbt Line $A F$, thro its Centor F, cutting the Superficies of the Sphere in tbe Point C. 1fay the right Line AF, is perpendicular to thet Plan of the Circle BGDH, and Cis the other Pole of the fame Circle. For becaufe the two Triangles

Book I. The Spbericks of Theodofius.

$A F B, A F D$, bave itwo Sides, $A F, F B$, equal to two Sides $A F, F D$, and the Bafe $A B$ equal to the Bafe $A D$, from the Def. of a Pole, the two Angles $A F B, A F D$, (a) will be equal, and therefore right ones. Whence (a)8. 1: the right Line $A F$, is parpendicular to $B D$. In the fame manner, we demonftrate, that the fame $A F$, is perpendicular to the right Line GH, (b) and conse-(b) 4.1r. quently to the Plan of the Circle EGDH, drawn thro the right Lines $B D, G H$. Which was the firft thing to be demonfrated. Now becaufe AF, is at right Angles to the Plan of the Circle $B G D H$, the right Line $F A$, drawn from the Center F, will be perpendicular to the Plan of the Gircle. Wherefore, as bas been juft now demonfirated in this Scholium, if it be both ways producsd, it will fall in each Pole of the Circle, and accordingly C, will be the other. Pole of the Circle BGDH. Which was the fecond thing propefed.

THEO. VIII. PROP. IX.

If there be a Circle in a Spbere, and from one of its Poles, is drawn a Line Perpendicular to it: This Line will fall in the Center of the Circle, and from thence produced, will fall in the otber Pole of the Circle.

I
N the Sphere ABCD let there be the Circle BFDG, (a) from whofe Pole A to its Plan, is drawn (a) ri. Ir: the Perpendicular AE, cutting the Superficies of the Sphere in C. I fay E is the Center of the Circle BFDG Fig. Ir. and C the other Pole. For having drawn thro' E two right Lines any how, as $B D, F$, conneet their Extremes, with the Pole A, by the right Lines $A B, A D$, AF, AG, which will be all equal, from the Def. of a Pole. Alfo all the Angles, that the right Line AE makes at E, will be right ones, from Def. 3. lib. II. Euclid. (b) Therefore the Square of AB , will be e-(b) 47 . I: qual to the Squares of $A E, E B$, and the Square of $A G$ equal to the Squares of $A E, E G$; whence fince the Squares of the equal Lines $A B_{2} A G_{3}$ are equal, the Squares Squares of $A E, G E$, together. Therefore taking away the common Square of the right line $A E$, the remaining Squares of the right Lines $E B, E G$, will be equal, and fo the Lines themfelves. In the fame manner it may be demonftrated, that the right Lines EG, ED, are
(c) 9. 3. equal. (c) Wherefore E is, the Center of the Circle BFDG; which was propofed. Therefore becaufe from E, the Center of the Circle BEDG, there is raifed the (d) Cor. 2. Perpendicular EA to its Plan, (d) this will pafs thro' of this. the Center H , of the Sphere, and therefore the fame HE , drawn from the Center of the Sphere, will be perpendicular to the Plan of the Circle BFDG. Wherefore HE, both ways produced, will fall in the Poles of the Circle; and accordingly C , will be the other Pole of the Circle BFDG.Q.E. D.

THEO. IX. PROP. X.

A right Line drawn tbro' the Poles of any Circle in a Spbere, will be perpendicular to the Plan of the Circle; and will pafs thro the Center of the Circle, and of the Sphere.

Fig. 12. I N the Sphere ABCD , let there be a Circle, as BFDG, thro' the Poles A, C, of which is drawn the right Line AC, cutting the Plan of the Circle in E. I fay the right Line AC, is perpendicular to the Plan of the Circle, and paffes thro' it's Center (that is, E_{j} is it's Center) and alfo thro the Center of the Sphere. For any how drawing thro' E, the two right Lines $B D, F G$, and joining their Extremes by right Lines drawn from the Poles $A, C, A B, A G, A F, A D$, will be equal, and alfo $C B, C G, C F, C D$, from the Definition of a Pole. Therefore the two Triangles $A B C, A D C$, have two Sides $A B, A C$, equal to two Sides $A D, A C$, and the Bafe BC , equal to the Bafe DC. (a) Wherefore
(a) 8. I. alfo the Angles. BAC, DAC, will be equal. Therefore becaufe the two Triangles $A B E, A D E$, have the two

Book I. The Splbericks of Thedofius
Sides $A B, A E$, equal to the two Sides $A D, A E$, and the Angles BAE, DAE contained under them equal, as has been proved, alfo the Angles AED, AEB, (b) will be equal, and confequently right ones. In the fame (b) $4 . \mathrm{r}_{0}$ manner we demonftrate, that AEG, AEF, are right Angles. Therefore the right Line AE is at right Angles to the Lines.BD, FG. (c) Wherefore it will (c) 4. Ir: be Ierpendicular to the Plan of the Circle, drawn thro' the right Lines BD, EG. Which was the thing firt propofed. Now becaufe from A, the Pole of the Circle BFLG, the right Line AE is drawn perpendiculrr to its Plan, (d) AE will fall in its Center. Therefore E, is the Center of the Circle BFQG. Again, be- this. 9 . of caule from 1, the Center of the Circle BFGD, is drawn the Perpendicular EA, to its Plan, this (e) will alfo pafs (e) Cor. 20 thro' the Center of the Sphere. VVherefore the right of this. Line AC is Perperidicular to the Plan of the Circle BFDG, and paffes thro' its Center, and the Center of the Sphere. Q E. D.

SCHOLIUM.

There are added bere thefe two other Theorems.

I.

If there be a Circle, in a Sphere, and from one of its Poles a right Line be drawn thro' the Center of the Sphere; this Line will be perpendicular to the Plan of the Circle, and prodi:ced, will fall in its Center, and the other Pole.

In the Sphere $A B C D$, whofe Center is E, let there Fig. 13. be the Circle BGDH, from whofe Pole A, thro E, the Center of the Sphere, is drawn the right Line $A E$, cutting the Plan of the Circle in F, and the Superficies of the Sphere, in C. 1 1 ay $A E$, is perpendicular to the Plan of the circle, and pafles thro its Center and the other Pole; that is, Fis the Center, and C, the otber Pole For having drawn the two right Lines BD,GH, any how, and drawn Lines to their Extremes, from the Points $A, E ; A B, A H, A D, A G$, fram the Definition of a Pole, will bo equal; as allo $E B_{2} E H_{2} E D_{2} E G$, the Seni Semidiameters of the Sphere. Therefore becaufe the two Triangles $A B E, A D E$, have two Sides $A B$, $A E$, equal to two Sides $A D, A E$, and the Bafe
(a) 8. 1. EB equal to the Bafe ED; (a) the Angles BAE, DAE. will be equal. Therefore the two Triangles $A B F, A D F$, have two Sides, $A B, A F$, equal to two Sides, $A D, A F$; and the Angles BAF, DAF, contain'd under them, e
(b) 4. I. qual, as jut now was /hern. (b) Wherefore the Angles, AFB, AFD, will be equal, and therefore right ones. We demonfrate, in the fame manner, that the Angles AFH, $A F G$, are right ones. Therefore the right Line $A F$, is at right Angles to the two right Lines $B D, G H$;
(c) 4. Ir. (c) wherefore it will be perpendicular to the Plan of the Circle $B G D H$, drawn thro the right Lines $B D$,
(d) 9. of GH: (d) And therefore produced, woill fall in the Center this. of the Circle and the other Pole; and accordingly F, will be the Center of the Circle, and C the other Pole. Q. E. D.

COROLLARY.

Hence, a great Circle paffing thro' one of the Poles of any Circle in a Sphere, paffes alfo thro the other Pole. For if from one Pole, thro the Center of the Sphere, be drawn the Diameter of a great Ciycle, paffing thro' that Pole, -this will fall in the other Pole, as has been demonftrated. Therefore the fame great Circle will pars thro the other Pole. And becaufe the Diameter of a great Circle, is alfo the Diameter of the Sphere, it is manifeff, that the two Poles of any Circle in a Sphere, are diametrically oppofite ; and therefore between them there is interpofed a Semicircle of a great Circle.

II.

If there is a Circle in a Sphere, and from the Center of the Sphere a right Line be drawn, thro' the Center of the Circle; the faid Line will fall in both the Poles of the Circle.

In the laft Figure 'draw thro' E, the Center of the Sphere, andF theCenter of the CircleBGDH, the rig btLine $E F$, which produce both ways. I ay EF, falls in each Pole of the Circle BGDH: For becaufe the right Line

Book I. The Spbericks of Theodofius.
EF, connecting the Center of the Sphere. and the Center of the Circle HGDH, (\%) is perpendicular to the Plan (e) 7. of of the fame Circle, (f) the fame EF, each way produ- this. ced, will fall in both the Poles of the Circle. Q, E. D. $\begin{gathered}(f) \\ \text { this. }\end{gathered}$
COROLLARY.

From the whole, it is manifeft, that there four Points, in a Sphere, namely the two Poles of any Circle, its Center, and the Center of the Sphere, are always in one right Line, viz. the Diameter of the Sphere; which Diameter it perpendicular to the Plan of the Circle: So that a right Line drawn thro' any two of thofe Points, will alfo pafs thro' the other two, and be perpendicular to the Plan of the Circle: Likewife a right Line drawn thro' one of thofe Points, perpendicular to the Plan of the Circle, will alfo pais thro' the other three Points.

THEO. X. PROP. XI.

Great Circles in a Spbere, mutually cut each otber in balf.

IN the Sphere $A B C D$, let the two great Circles AC, Fig. 14. BD mutually cut each other in the Points E, F. I fay they mutually bifect each other. (a) For becaufe great Circles in a Sphere pafs thro' its Center, the Circles ${ }^{(a)} 6$. of AC, BD, will pafs thro the Center of the Sphere, which let be G. (b) And hecaufe the Center of the Sphere is the fame, with the Center of a Circle paffing of this. thro' the Center of the Sphere, the Point G, which is put for the Center of the Sphere, will be alfo the Center of both the Circles $A C, B D$, fo that it will be in the Plans of both the Circles AC, BD. Alfo the Points E, F, are in each Plan. Therefore three Points E, G; F , are in both the Plans of the Circles AC, BD; and confequently they will be in their common' Section, becaufe only theit common Section is in each. Plan., (c)(c) 3 . Inī But their commons Sestion is a right Line. Therefore
D three three Points E, G, F, are in a right Line drawn from E thio G to F, which becaure it paffes thro' G, the Center of both Circles, and of the Sphere, as has been prov'd, it will be the Diameter of both Circles, and of the Sphere.. And therefore it will cut each of them in half, fo that EAF, FCE, EBF, FDE, are Semicircles. Q. E. D.

THEO. XI. PROP. XII.

Circles in a Sphere, mutually cutting one another in balf, are great ones.

Fig. 15. IN the Sphere $A B C D$, let the Circles $A E, B D$, mutually hifeet each other in the Points E, F. I fay the Circles AC, BD, are great ones. For becaufe they mutually bifeet each other, in E, F, the right Line EF, (being drawn) will be the Diameter of them both, fince only a Diameter bifects any Circle; and accordingly the xight Line EF, being bifected in G, G will be the Center of both the Circles: Which I fay alfo is the Center of the Sphere, and confequently both Circles pafs thro' the Center of theSphere. For if G, be denied to be the Center of the Sphere, and accordingly the Circles AC, BD , are not drawn thro' the Center of the Sphere; we thus demonftrated that G, is the Center, and therefore
(a). 12. each Circle paffes thro' the Center of the Sphere. (a) For II. raife from G, to the Plan of the Circle $A C$, the perpendicular GH: Alfo raife GI, perpendicular to the Plan of the Circle BD. Therefore becaufe the Circles AC, BD, are denied to pafs thro the Center of the Sphere, both (b) Cor. 2 the perpendiculars $\mathrm{GH}, \mathrm{GI},(b)$ will pais thro the Cenof this. ter. Wherefore the Point G, in which they meet, will be the Center of the Sphere, for othetwife the Center will not be in both: And accordingly both the Circles (c) 6. of pars thro' the Center of the Sphere. (c) Therefore the this. Circles $A C, B D$, paffing thro the Center of the Sphere are great ones. And confequently Circles in a: Sphere mutually bifecting each other, are great ones. Q. E. D.

SCHOLIUM.

Abstract

Here you fee an admirable way of arguing. For fromin the Denial of G's being, the Center of the spore, it is demonftrated in the Afirmative tipat G is the Center of the Sphere. Which mannur of ariguing allo is ufed by Euclid, in Prop. 12. Lib. 9, anii by caidan in Lib. 5. Prop. 201, as we bave inentioned in the Suholium of the Sama Propofition.

THEO. XII. PROP. XIII.

If a great Circle in a Spbere cuts any otber Circle at rigbt Angles; it will aljo cut it in balf, and pafs tbro its Pales.

$\mathbf{L}_{\mathrm{Ci}}^{\mathrm{E}}$ET the great Circle ABCD in a Sphere cut the Fig. ${ }^{16!}$ is ircle BED, at right Angles, in the Points B, D, that is let the Plan of the Circle ABCD, be at right Ang es, to the Plan of the Circle BED, and let their common Section be the right Line BD. I fay the Circle ABCD, cuts the Circle BED , in half, and palfes thro its Poles. (a) For the Ceiter F, of the grear Circle $A B C D$, being (a) I. I. found, which alfo will be the Center of the Sphere: (b) For when a great Circle is drawn thro' the Center of (b) 6 . of the Sphere, ($($)) its Center, will be the fame as the Cen- this. ter of the Sphere.) (d) Draw the perpendicular Fú, 'c) Cor. I.: from F to the Plan of the Circle BED, (e) which will of this. fall in the common Seztion BD. And let it fall in G. (d) rf. Ir. Then becaufe it likewife falls in the Center of the Cir- (e) 38. r1. cle BED, G will be the Center of the Circle BED. (f) f Cor. 1 . and therefore BD drawn thro' G , will be a Diameter of the of this. fame: And becuufe it divides the Circle BED in half, alfo the great Circle ABCD, drawn th: o' the right Line $B D$, will divide it in half. Which was the firft thing propofed. Now becaufe the right Line FG, is in the Plan of the Circle ABCD, that produced, will fall to the Points A, G which are in the Supcricies of the $(g) 8$ of Sphere: (g) It will likewife fall in each Pole of the Cir- this. cle BED, becaufe it is drawn from F, the Center of the Sphere, perpendicular to the Plan of the Circle. Therefore A, C, are the Poles of the Circle BED ; and according the great Circle ABCD, paffes thro' the Poles of the Circle BED. Which was the fecond Thing propofed to be demonfrated.

SCHOLIUM.

This, together with the 8 th, 9 th, and rotb. Propofitions, and their Scholium, take place, when the Circle, BD, is a great Circle, and pafles tbro the Center of the Sphere. For it is manifeft, the Demonfration is nighly the fame.

THEO. XIII. PROP. XIV,

If a great Circle in a Spbere bifects another Circle, wibuch is not a great one; it will cut that otber Circle at right Angles, and pafs thro' its Piles.

LET the great Circle ABCD, in a Sphere, cut the leffer Circle BED, in half, in the Points B, D, and let their common Section be the risht Line BD . I fay the Circle ABCD, cuts the Circle BED, at right Angles, and pifies thro its Foles. For becaure the Circle BED, is bifected in B, D, that is, in Semicircles, the common Section BE, will be its Diameter. Therefore BD, heing bifected in F, Fwill be the Center of the
(a) 2. of this.
(b) 7. of this
(c) 18.1 If Circle BED. (a) And affuming G, the Center of the Sphere, which alfo will be the Center of the great Circle $A B C D$, draw from G to F, the right Line $\mathrm{GF}_{\text {, (}}$ (b) which will be perpendicular to the Plan of the Circle BED : (c) And fo the Plan of the great Circle ABCD, drawn thro the right Line FG, will be at right Angles to the Plan of the Circle BED. Therefore the great Circle $A B C D$, cuts the leffer fircle BED, at right Angles: Which was the firf thing tc be demonftrated. And becaufe ir has been fhewn, that the right Line FG, drawn from G, the Center of the Sphere, to the Plan of the Gircle BED , is perpendicular, FG , each way produced,

Book I. The Sphericks of Theodofius.

(l) will fall in the Poles of the Circle BED. Wherefore (d) 8 . of becaufe GF^{F} exifting in the Han of the Circle $A B C D_{2}$ this. produced falls in its ircumference in the Points A, C, which alfo are in the Superficies of the Sphere; A, C, will be the Poles of the Circle BED; and therefore the great Circle ABCD, paffes thro' the Poles A, C, of the lefler Circle BED. Which was the fecond thing propofed.

THEO. XIV. YROP. XV.

If a great Circle in a Sphere paffes ibro' the Poles of anotber Circle, it will bifect this other Circle, and cut it at right Angles.
I. ET the great Circle $A B C D$, in a Sphere, pafs thro Fig. 18, the Poles A, C, of the Circle BED: I fay the Circle $A B C D$ cuts the Circle BED, in half, and at right Angles. For from one Pole to the other draw the right Line $A C$, cutting the Plan of the Circle BED in F. (a) Then becaufe the right Line AC, is perperidicular to the Plan of the Circle BED, and paffesthro the Center of $(a) \mathrm{ro}$. of . the Sphere, and the Center of the Circle BED; F, will be the Center of the Circle BED. Therefore fince the great Circle $A B C D$, cutting the Circle BED, pafles thro the right Line $A C$, and fo thro' the Center F, the commonSection BFD, will be a Diameter of the Circle BED. Therefore the Circle BED is bifceted; I fay alfo and at right Angles. For becaufe the righ Line AC, has been fhewn to be perpenidicular to the Plan of the Circle BED, alfo the Plan of the great Circle ABCD, drawn thro' the right Line AC, (b) will he atright Angles (b) 18. If: to the Plan of the Circle BED. Q. E. D.

SCHOLI

SCHOLIUM.

There are added Four other Theorems, in this Order, in another Verfion.

I.

If a great Circle in a Sphere, paffes thro? the Poles of any other great (ircle, this fhall mutually pafs thro' the Poles of that.

Fig. 19. Let the great Circle $A B C D$, in a Sphere, pafs thro' the Poles A, C, of the great Crcle BD. I Jay the great Circle $B D$, will alfo pafs thro the Pules of the great Circle ABCD. For becaufe the great Circle ABCD, $p a f$ -
(a) 15. of Sestbro the Poles of the Circle BD, it (a) will cut it at this. right Angles. Wherefore reciprocally the Ereat Circle (b) 13. of BD, will cut the Circle $A B C D$, at right Angles. (b) *) bis. and therefore it, will pass thro its Poles. Which, was propofed.

II.

If a Circle in a Sphere, paffes thro' the Poles it of another Circle, it will be a great Circle, byfecting that other Circle_{2} and alfo at right An gles to it.

Fig. 20.
Let the Circle $A B C D$ in a Sphere, pafs thro the Poles A, C, of the Circle BD. I fay it is a great Circle, and cuts the Gircle BD in half, and at right Angles. For joyn the Poles A, C, by the rizht Line $A G$, which necelfarily, will be in the Plan of the Circle $A B C D$, becaufe its Circuinference, is fuppofed to pafs thro'
(a) 10.0f the fame Poles A, C. But becaule the right Line $A C$, (a) 10.0 drawn thro the Poles A, C, of the Circle BD, (a) pafthis. fes thro' the Center of the Sphere, alfo the Circle ABCD,
(b) 6 . of (becaufe it is drawn thro' the right Line. AC.) will pafs this.
thro the Center of the Sphere; (b) and confequently will be a great Circle. Wherefore fince it is fuppofed
(c) 15 . of to pafs throo the Poles A, C, of the Circle $B D$, (c) it tubis. will cut it in balf, and at rigbt Angles. VVbich was propofed.

Book I. Tbe Sphericks of Thedofius

III.

If a Circle in a Sphere cuts another Circle in half, and alfo at right Angles; it will be a great Circle, and paffes thro' the other Circle's Poles.

Let the Circle $A B C D$, in a Spbere, cut the Gircle Fig. 21. BD, in half, and at right. Angles. I fay it is a great Circle, and palfes thro the Poles of the Circle BD. For let the right Line $B D$ be their common Section. There: fore becaule the Circle $A B C D$, cuts the Circle BD, in balf, the right Line BD, to wit, their common Section, will be the Diameter of the Circle BD, and therefore bifects the rigbt Line BD, in E : Whence E, will be the Center of the Circle. Now draw in the Plan of the Circle $A B C D$, the right Line $E A$, perpendicular to $B D$. Then becaufe the Circle $A B C D$, cuts the Circle $B D$ at right Angles, EA, (from Def. 4. Lib. 11. Euclid) will be at right Angles, to the Plan of the Circle BD; and accordingly becaufe it is drawn from E, its. Center, it will (d) fall in both the Poles: It alfo falls in the Cir- (d) Scol.8. cumference of the Circle $A B C D$, exifting in the Super- of this. ficies of the Spbere, at the Points A, C. Therefore A, C, are the Poles of the Circle BD; and fo the Circle ABCD, pafos thro the Poles A, C, of the Circle CD. Wherefore from the precedent Theorem, it will be agreat Gircle. But it has been prov'd that it paffes thro the Poles of the Circle BD. Therefore what was propoled ${ }_{3}$ is manifef.

> IVे.

If there is a Circle in a Sphere, and from one of the Poles be drawn to its Plan a perpendicular Line equal to its Semidiameter; the faid Circle will be a great one,

Let there be a Circle, as $A B$ in a Sphere, from the Fig. 22. Pole C of which, to its Plan, is let fall the Perpendicular $C D$, equal to its Semidiameter. I fay $A B$ is a great Circle. For becaufe $C D$, is perpendicular to the Circle $A B$, it (b) will fall in the Center of the Circle, (h) g. of and produced will fall in the other Pole, whisb let be E. this.
(i) Cor. 2. VVhence D, is the Center of the Circle $A B$: And (i) of this therefore the Perpendicular $C D$, will pafs thro the Center of the Sphere. Now draw thro the right Line
(k) I. of CE, in the Sphere, a Plan any how (k) making the this. (l) 6. of the Sphere, (l) will be a great Circle. VVbich Cir this. (m) St, Angle $C D B$, will be (from Def. 3. Lib. II. Euclid.) 13.6. onal between $C D, D E$, that is, as $C D$, to $D B$; fo will $B D$ be to $D E$. But $C D$ is equal to $B D$. And therefore $D E$, will be equal to the fame $B D$; and con \int equently $C D, D E$ will be equal, between themfelves. Therefore becaufe CE, has been proved to pafs thro' the Center of the Sphere, D will be the Center of the Sphere. But it was alfo the Center of the Circle $A B$. Therefore the Center of the Sphere, and the Center of (n) 6. of the Circle $A B$, is the fame; (n) whence accordingly the this.

THEO. XV. PROP. XVI.

If there is a great Circle in a Sphere, a rigbt Line drawen from one of the Poles to its Circumference, is equal to the fide of Square inforibed in a great Gircle.

Fig. 23. ET there be a great Circle AB , in a Sphere, from whofe Pole C, to its Circumference, is drawn the right Line CB. I fay CB is equal to the Side of the Square infcribed in the Circle $A B$, or any other great one. For (a) draw from C, to the Circle $A B$, the Perpendi(b) 9. of cular $\mathrm{CE},(b)$ which will fall in its Center, which let be this. E, and produced will fall in the other Pole, which let be D. Now let there be drawn thro the right Lines AB, CD, a Plan, (c) making the Circle ADBC in the (c) r. of Sphere; which becaufe it pafles thro' E the Center of the this.

Book I. The Sphericks of Theodofius.

Sphere (for E, the Center of the great Circle AB; which paffes thro' the Center of the Sphere, (d) will be the (d) Cor. I: fame, as the Center of the Sphere) (e) will be a great of this. Circle; and therefore it will (f) bifect the great Circle (e) .. of AB. VVhich likewife from hence is manifeft, be- this. caufe it paffes thro' its Poles. (g) For from hence it is $t f$) II. of that it bifects it. Let therefore the common Section (g) 15. of BEA be the Diameter. And becaufe CE, is drawn this. perpendicular to the Circle $A B$, it will be perpendicular (from Def. 3. Lib. II. Euclid) to the right Line $A B$. Therefore two Diameters $A B, C D$, in the great Circle ADBC, mutually cut each other at right Angles: (b) and accordingly, as is demonftrated in the fourth (b) 6.4. Book of Euclid, CB, is the Side of a Square infribed in the great Circle ADBC, and likewife in the great Circle AB. Q. E. D.

COROLLART.

But becaufe the four right Angles, at the Center E_{2} are equal, and (i) confequently the four Arc's $\mathrm{BC}, \mathrm{CA}_{2}^{\prime}$ (i) 26.3° $A D, D B$, which they comprehend, equal, viz. Quadrants, it is manifeft, that the Pole of a great Circle, in a Sphere, is diffant from its Circumference, a Quadrant of a great Circle. For C, the Pole of the great Circle $A B$, is diffant from its Circumference, by the Quadrant CB , and there is the fame reafon for the others. For (k) always a right Line drawn from the $\operatorname{Cir-(k)}$ i6: of cumference of a great Circle to its Pole, is equal to this. the Side of a Square infrib'd in a great Circle, and therefore it fubtends a Quadrant in a great Circle.

SCHOLIUM.

The Converfe of this is likewife demonftrated, in the other Verfion, in this Theorem.

If there is a Circle in a Sphere, and a right Line be drawn from its Poles to its. Circumfes rence, equal to the Side of a Square infcrib'd in it, that Circle will be a great enes $C B$, from the lole C, of the Circle $A B$ to its Circumference, equal to the Side of the Square infcribed in
(1) Ir. II. the Circle $A B$. 1 fay $A B$ is a great Circle. For (1) let there be drawn from C. to the Circle $A B$, the Per(m) 9 of pendicular CE, which (m) willfall in iss Center, which this.
(n) $47 . \mathrm{I}$. let be E. And having drawn the Semidiameter $E B$; the Angle E (from Def. 3. lib. II. Euclid) will be a right one. (n) Therefore the Square of $C B$, that is, the Square defcrib'd in the Circle $A B$, is equal to the Squares of BE, CE: But the Square of the Semidiameter $B E$, is balf the Square defcrib'd in the Circle $A B$, as prefently fhall be demonfrated. And therefore the Square of CE, will aljo be balf of the Square defcrib'd in the fame Circle; whence the Squares of $B E, C E$, will be equal to each ot ber, and confequentZy the Lines BE, CE. Wherefore becaufe CE is drawn from the Pole C, of the Circle $A B$, perpendicular to its (0) Schol. Plan, and it has been proved to be equal to the Serni${ }_{5} 5$. of this. ter $B E,(\theta) A B$ will be a great Circle.

LEMMA.

In any Circle the Square of the Semidiameter is half of the Square inferib'd in it.

Fig. 24. In the Circle, mbofe Center is F, let there be drawn the Diameters $A C, B D$, crofing each other at right Angles, in the Conter E. Therefore the right Lines $A B, B C, C D, D A$, being drawn $A B C D$ will be a Square, infcrib'd in the Circle, as is manifeft from Prop. 6. lib. $4 \cdot$ Euclid. But becaufe the Squares of the equal Semi-
(p) 47, 1. diameters $E A, E B$, are equal between them m elves, (g)
they both together are equal to the Square of $A B$; wherefore the Square of $E A$, will be balf the Square of $A B$. VVbich was propofed.

THEO. XVI. PROP. XVII.

If there be a Circle in a Spbere, from whofe Pole to its Circumferense is drawn a right Line equal to the Side of a Square infcrib'd in a great Circle, the aforefaid Circle will be a great one.
I ET there be a Circle, as AB, in a Sphere, from whofe Fig. 25. Pole C to its Circumference is drawn the right Line CA, equal to the Side of a Sphere infcrib'd in a great Circle of the Sphere. I fay AB is a great Circle. For draw a Plan thro' the right Line AC , and the Center of the Sphere, (a) making the Circle ACB in the Sphere, which (b) (a) I. of will be a great one, becaufe it's drawn thro' the Center of ${ }_{\text {this. }}$. the Sphere. Draw alfo from C, the right Line CB to (b) 6 . of the Point B, in which the great Circle ACB, cuts the this. Circle $A B$; then from the Def. of a Pole, the right Line CB, will be equal to the right Line CA. Therefore becaufe AC, is the Side of a Square infrib'd in the great Circle ACB, C3 will be alfo the Side of the fame Square; and therefore the two Arc's AC, CB , will be Quadrants, making up the Semicircle $A C B$, becaufe the four equal Sides of the Squares, (c) fubtend four e-(c) 28. 3. qual Arc's of the Circle. Therefore the right Line - AB , the common Section of the Circles, will be a Diameter of the great Circle ACB; and accordingly of the Sphere. But becaufe the great Circle ABC paffing thro' the Poles of the Circle AB, (d) cuts it in half, the (d) 15 . of common Section AB, will alfo be a Diameter of the this. Circle $A B$; and accordingly, fince it is likewife the Sphere's Diameter, AB will be a great Circle. Q. E. D.

PROB. II. PROP. XVIII.

To draw a right Line equal to the Diameter of any Circle in a given Spbere.

Fig. 26. ET any Circle $A B C D$ be given in a Sphere: It is required to find its Diameter. Having affumed any where three Points, A, B, D, in the Circumference of the Circle, and drawn the right Lines AB, AD, (a) Schol. BD , (a) make the Triangle EFG equal to the Triangle
z2. I. z2. I. $A B D$, fo that the Side $E F$ be equal to the Side $A B, E G$, to $A D$, and $F G$ to $B D$. For the three Intervals $A B$, AD, BD taken in the Superficies of the Sphere may by help of a pair of Compaffes be transferr'd on a Plan; and fo a Triangle may be conftituted, whofe three Sides are equal to thofe three Diftances. Again from G, F, draw the Perpendiculars FH, GH, to the right Lines EF, EG, concurrirg in H, and joyn the Points E, H. I fay EH, is equal to the Diameter of the Circle ABCD. For having drawn the Diameter AC, joyn the Points D, C. (b) Schol. Now (b) becaufe the four Angles of the quadrilateral 32. I. Figure EFHG, are equal to two right ones, and EFH, EGH, are right Angles, alfo FEG, FHG, will be equal to two right ones; and therefore in the quadrilateral Figure EFHG, any two oppofite Angles, are equal to (c) Schol. two right Angles. (c) Wherefore a Circle may be de22.3. frrib'd about it: VVhich being defcrib'd, the Angles EFG, EHG, in the fame Segment, whofe Chord is EG, (d) 27.3. (d) will be equal. (e) But the Angle EFG, is equal to the Angle ABD; fince the two Sides EF, FG, are equal to two Sides $A B, B D$, and the Bafe EG, to the Bafe (f) 27.3. AD, from Confruction, (f) and alfo the Angle $A B D$, equal to the Angle $A C D$. Therefore alfo the (g) 3r.3. Angle EHG, will be equal to the Angle ADC, (g) which here likewife is a right Angle, being in the Semicircle ADC. VVherefore the Triangles EHG, ACD, have two Angles equal to two Angles, and alfo the Side EG, fubtending one of the equal Angles equal to the Side AD. (b) VVherefore alfo the Side EH, will be (b) 26.I. equal to the Side AC. Therefore we have drawn the

Book I. The Spbericks of Theodofius.

 right Line EH , equal to the Diameter AC , of the Circle $A B C D$ Q. E. F.
PROB. III. PROP. XIX.

To dram a right Line equal to ibe Diameter of a given Spbere.

HAving affumed the two Points A, B, any where on
the given Sphere, defribe from the Pole A, and with the diftance $A B$, the Circle BD , to (a) whofe 27. Diameter make the right Line FG Diameter make the right Line FG, equal, (b) and make t this. upon FG, the Triangle EFG, having each of the other (b) Schol. Sides EF, EG, equal to the drawn Line $A B$, viz. in af- 22 . r. fuming with a pair of Compaffes the interval $\mathrm{AB}, \mathcal{V O}^{\circ} \mathrm{C}$. Again draw from F, G, the Perpendiculars FH, GH, to the Lines EF, EG, meeting in H ; and joyn the Points E, H. Ifay EH, is equal to the Diameter of the given Sphere. For having drawn the Diameter AC of the Sphere, draw a Plan, thro' the right Lines $\mathrm{AB}, \mathrm{AC},(c)(c)$ r. of making the Circle $A B C D,(d)$ which will he a great ${ }^{\text {this }}$. one, becaufe it is drawn thro' the Diameter of the (d) 6 . of Sphere, and fo thro' the Center of the fame. Wherefore the fame drawn thro' A, the Pole of the Circle BD (e) will bifect the Circle BD; and ac-(e) 15.0 of cordingly the common Section BD, will be a this. Diameter of the Circle BD : And drawing the right Lines AD, DC, the two Sides AB, DB, will be equal to the two Sides EF, FG, as alfo the Bares AD, EG. For FG, is equal from Conftruction, to the Diameter BD : And both EF, EG, to AB , or AD . (f) Therefore $(f) 8$. I: alfo the :Angles ABD, EFG, will be equal. $(g) \operatorname{But}(g) 27.3 \cdot$ the Angle ACD, is equal to the Angle ABD: And alfo the Angle EHG, to the Angle EFG, as has been demonftrated in the precedent Propofition. Therefure likewile the Angles ACD, EHG, will be equal. Alfo the right Angles ADC, EGH, are equal, and likewife the Sides AD, EG. (b) Therefore the right Line EH, (b)26. ұ. will be equal tothe right Line AC. Wherefore we have drawn the right Line EH , equal to the Diameter AC , of the given Sphere, Q.E.E. SCHO.

SCHOLIUM.

The following Theorem is added in the otber Verfion.

A right Line drawn from the Pole of any Circle in a Sphere, to its Superficies, equal to a right Line drawn from the fame Pole, to the Circumference of the Circle, falls in the Circumference of the faid Circle.

Fig. 28. Let there be any bow drawn the right Line AD, from the Pole A of the Circle BC, in a Sphere, to its Circumference, which will be leffer than the Diameter of the Sphere, and therefore leffer than the Diamster of a groat Circle in the Sphere (becaufe the Diameter of a Sphere is the greateft of all right Lines drawn in a Sphere.) Now draw from the jame Pole A, to the Superficies, the right Line $A E$, equal to AD. 1 fay the right Line AE, falls in the Circumference of the Circle BC. For if it does not, thro the right Line AE, and
(i) i. of the Circle $A B C$, in the Sphere, which (k) will be a this. of great one, as boing drawn thro' the Center of the (k). 6 . of \quad Speat one, as boing drawn thro the Center of the
thisewis letet the Circle ABC, cut the Circle
BC $B C$, in the Points B, C. Therefore the right Line $A E$, will not fall in tbe Points B, C; becaufe it is fuppofed not to fall in the Circumference of the Circle BC. Whence the right Lins AB being drawn, this will be, from the Definition of a Pole, equal to $A D$, and therefore to the right Line $A E$. And becaufe both $A B, A E$, are leffer than the Diameters of the great Circle $A B C$, as has been faid, (l) the Arc's $A B$, $A E$, becaufe they are Segments leffer than a Semicircle, will be equal, viz. the Part to the Whole: which is abfurd. Therefore the right Line $A E$, falls in the Circumference of the Circle BC, which was propofed.

PROB. IV. PROP. XX.

To describe a great Circle through two Points given, in the Superficies of a Sphere.

LET there be given the two Points A, B, in a Spherical Superficies, tho' which a great Circle is required to be drawn. Now if the Points A, B, are diametrically oppofite, it is certain that an infinite number of great Circles may be described tho' them, viz. in drawing an infinite number of Plans thro the Diameter connecting there two Points. But if the Points A, B, are not in the Diameter of the Sphere, defribe the Circle CD, from the Pole A, and with a Diftance equal to the Side of a Square infribed in a great Circle, (a) which will be a great Circle, fince the right Line drawnfrom the Pole this. A, to its Circumference, is equal to the Side of the infrribed Square in a great Circle, and becaufe of the Interval, by which the Circle CD is defcribed. ThisInter; val is thus found. The Diameter of the Sphere being found, as in the preceding Prop. the Side of the Square infribed in a Circle defribed with that Diameter, will be the Interval fought. Likewife from the Pole B, with the fame Interval, defribe the Circle EF, (b) which (b) 17 of will alto be a great Circle. Let this cut the frt in the ${ }^{\text {this. }}$ Point G, from which draw the right Lines GA, GB; each of which from Construction, will be equal to the Side of an inscribed Square in a great Circle. For with fuck an Interval are the Circles CD, EF, defribed. Therefore GA, GB, are equal. Now from the Pole G, and with the Interval GA, let there be defcribed the Circle AEDFCK, (c) which will be a great one. But (c) 17. of because the right Line GB, is equal to GA, drawn to this. the Superficies of the Sphere, (d) it will fall in the (d) School. Circumference of the Circle AEDFCB. And accor- 19 . of this. dingly the defrrib'd Circle AEDFCB, will be a great one paffing thro' the two given Points $A_{2} B_{2}$ in the Guperficies of the Sphere. Q. E, D.

PROB. V. PROP. XXI.

To find the Pole of any givenCircle in a Spbere.

Fig. 30. ET the Pole of the given Circle $A B$, be required, 31. which, firf, let not be a great one. Having affumed the two Points C, D, any where in the Circum(a) 30.3 . ference, (a) divide the Arc's CAD, CBD in half, in (b) 20. of A, B, (b) thro which let there be defcrib'd the great this. Circle AEB; whofe Arc AEB bifect in the Point E. I fay E, is the Pole of the Circle AB; for becaufe the Arc's $A C, A D$, are equal, as alfo $B C, B D$, the whole Arc's $\mathrm{ACB}, \mathrm{ADB}$, will be equal. Wherefore becaufe the great Circle AEB, bifects the Circle AB, which is
(c) I4. of not a great one, in the Points $\mathrm{A}, \mathrm{B},(c)$ it will pars shis. thro its Polcs. Therefore the Point E, equally diftant from the Circumference of the Circle AB, is the Pole of the Circle $A B$. In the fame manner, if the other Arc AFB, is bifected in F, F will be the other Pole of the "Circle AB.

But now, let the given Circle AB , be a great one. 6d. 30. 3. Having again any how affum'd the Points $\mathrm{C}, \mathrm{D},(d)$ and bifected the Arc's CAD , CBD, in A, B, we prove that the Arc's $\mathrm{ACB}, \mathrm{ADB}$, are equal; and accordingly both of them are equal to a Semicircle of a grear Circle. Therefore dividing one of the Semicircles, ziz. ACB, in half in G , a right Line GA fubtending a Quadrant, will be the fide of a Square infcrib'd in the great Circle AB ; as is manifeft from Prop.6. Lib. 4. Euclid. Therefore, from the Pole G, and with the diftance GA (o) :7. of defcribe the Circle AEB, (e) which will be a great one. tibis. Lafly, bifect the Arc AEB, in E. I fay E is the Pole of the Circle AB. For becaufe the great Circle ACB, paffes
rischol. the Gircle the Pole of the great Circle AEB; (f) AEB
$1+9$ this. will likewife pafs thro' the Poles of the Circle ACB. VVherefore the Point E, equally remote from the Circumference of the Circle ACB , is the Pole of the Circle ACB. In the fame manner, dividing the Arc AFB, in half, in $F ; F$ will be the other Pole of the Circle ACB. Q.E.F.

Book I. The Sphericks of Theodofius.

S C HOLIUM.

The following two Theorems are demonfirated in the other Verfion.

I.

If there be taken any Point, in the Superficies of a Sphere, and from the fame to the Circumference of any given Circle in the Sphere there are drawn more than two equal right Lines: The aforefaid affumed Point is the Pole of that Circle.

Let A be the Point affumed in the Superficies of the Fig. 32 Sphere $A B C$, from which to the Circumference of the Circle $B C$, there fall more than two right Lines, as $A D, A E, A F$. 1 fay A is the Pole of the Circle. BC. (a) For draw from A, to the Plan of the Circle $B C$, the Perpendicular $A G$, and joyning the right Lines $D G, E G$, FG; then, from Def. 3. lib. 11. Euclid, all the three Angles at G, will be right ones. (b) Wherefore the (b) 47. I6 Square of $A D$ is equal to the Squares of $A G, G D$; the Square of $A E$, to the Squares of $A G, G E$, and \& $\& c$. Therefore becaufe tbe Squares of the equal right Lines $A D, A E, A F$, are equal; alfo the Squares of $A G$, GD, together will be equal to the Squares of $A G, G E$ together, as alfo to the Squares of $A G, G F$, together; Therefore taking away the common Square of the right Line $A \mathrm{G}$, the remaining Squares of the right Lines GD, GE, GF, and confequently alfo the faid Lines, will be equal. (c) Therefore G will be the Center of the Gircle BC: (d) and aciordinly the right Line GA, (d) Schold drawn from the Center G, perpendicular to the Circle BC, falls in the Pole of that Circle." Therefore the Point A, is the Pole of the Circle BC. Which was propofed.

II.

Circles in a Sphere, from whofe Poles to their Circumferences are drawn equal right Lines, are equal. And right Lines drawn from the roles of equal Circles, to their Circumferenccs , are equal.

Fig. 33. In the Sphere $A B C D E F$, let there be two Circles, as $E F, C E$, from wobofe Poles A, D, the right Lines $A F$, DF, drain to their Circumferences, are equal. I fay (a) Ir. In, the Circles $B F$, $C E$, are equal. (a) For let there be drawn the Perpendiculars $A H$, DI, from the Poles A,
(b) 9. of D, to the Plans of the Circles, (b) which will fall in this. their Centers, H, ' ' and from thence produced, in the (c) 10. of other Poles, (c) and So in G, the Center of the Sphere. this. Therefore baving drawn the Senzidiameters $F G, E G$, of the Sphere, and the Semidiameters FH, EI, of the Circles; because the Sides $A G, G F$, are equal to the Sides DG, GE, and the Bale AF, to the Bale DE, the
(d) 8. I. Angles AGF, DGE, (d) will be equal. But the Angiles H, I, from Def. 3. lib. 11 . Euclid. Are right ones. Therefore the Triangles $F G H, E G I$, have two Angles equal to two Angles: Alpo the file $F G$ is equal
(e) 26. 1. to the Side $E G:$ (e) Therefore all the Semidiameters FH, EI, will be equal; and con \int sequently the Circles EF, CE are equal. Which was the thing first propoled.

Now let the Circles: $B F, C E$, be equal. I fay the Lines $A F, D E$, drawn from the Poles to their Circumferences are equal. For the fame things being conAructed, the Semidianeters FH, EI, will be equal, (f) 6. of (f) and the Circles, equally diftant from the Center thais.
(g) 4. I. of the Sphere. Wherefore the Perpendiculars GH, GI, will be equal; and consequently the Lines AH, DI, will be equal. Therefore because the Sides $A H, H F$, are equal to the Sides $D I, I E$, and contain the equal Angles at $H_{2} I_{3}$, as being right ones, from Def. 3. lib. 11. Euclid, (g) the Safes $A F, D E$, will be equal. Which was the jecond thing propofed.

Book I. The Sphericks of Theodofus.

THE. XVII. PROP. XXII.

If a right Line drawer tho the Center of a Sphere, cuts another Line not drawn tiro ${ }^{\circ}$ the Center, in half, it will be at right $A n$. gles to it. And if it cuts it at right Angees, it also bijeets it.

I ET the right Line AB, drawn tho the Center A, Fig. 34° of a Sphere, bifect the Line CD , not drawn throb the Center, in the Point B. I fay it cuts CD at right Angles. For a Plan being drawn tho' the right Lines (a) I. of AB, CD, (a) making the Circle CD , (b) (which will this. be a great one, becaure it paries tho the Center of the (b) 6. of Sphere,) becaufe the right Line AB , in the Circle CD , this. paling tho' its Center A , bifeets the right Line CD , not palling tho the Center, in B , (c) it will cut it at $(c) 3.3$. right Angles. And if it cuts it at right Angles, it will bifect it. Q. E. D.

SCHOLIUM.

There is here added in the Greek Verfion another Theorem, which is altogether the fame, as is demonfrated in the 7 th. Prop. Therefore it is needles here to repeat it.

End of the fir g BOOK

THE

OF

THEODOSIUS.

BO OK II.

> DEFINITION.

IRCLES in a Sphere are fid to mutually tolich one another, when the common Section of their Plans touches each Cirale.

For because a right Line touching any Circle in a Sphere, likewife touches the Superficies of the Sphere in the fame Point in which it touches the Circle (for if it did not touch it, but cut it, it would aldo neceffarily cut the Circle, because it is in its Plan, and connects two Points in the Superficies of the Sphere, viz. in which it is Said to cut it ; which two Points aldo are in the Circumference of the Circle; fine the Plan of the Circle is drawn thro that Line, and accordingly is

Book II. The Spbericks of Theodofius.

cut by it in those two Points.) From thence it is that the

 Circumferences of two Circles, the common Section of which (to wit, which their Plans produced make) toaches each Circle, have only that Point in which it douchest the Sphere, common: Because in that Point, and no other, the aforesaid common Section can touch both Circles; fince that all the other Points of it, are without the Superficies of the Sphere, and fo without each Circle. Therefore Theodofius has rightly defined, that Circles are mutually laid to touch one another in a Spbcre, when their common Section touches each Circle.
THEOL. PROP. I.

Parallel Circles in a Sphere?
L ET there be the Parallel Circles BF, CE, in the Sphere ABCDEF. I fay they have the fame Poles. (a) For let A, D, he the Poles of the Circle BF, and the right Line AD , (b) will be perpendicular (a) 2 r. r. to the Circle BF, and will pals three' the Center of the of this. Sphere. Therefore becaufe the right Line AD is per- Fig. 35. pendicular to the Circle BF , (c) it will be alfo perpendicular (b) Io. r. to the parallel Circle CE. Whence fince it paffes thro' the Center of the Sphere, as has been Shewn; (d) it falls in (c) Schol. the Poles of the Circle CE. Therefore A, D, are the IA. 1 I. Poles of the Circle CE. But they are likewife the of this 8 . Poles of the Circle BF. Q. E. D.

THE. II. PROP. II.

Circles in a Sphere, which lave the Same Poles, are parallel.

TN the lan Figure, let the Circles BF, CE , have the fame Poles : Now I fay they are parallel. For having drawn the right Line $A D$, (a) this will be perpendicu- (a) roo. 1 af lax this.

SCHOLIUM.

The following Theorem is likewife demonftrated in the other Verfion.

There are not more than two Circles in a Sphere, Equal, and Parallel.
Fig. 36. In any Sphere let there be, if pofible, more than two Circles, equal, and p arallel, viz. the three $A B, C D$,
(c) I. of this.
(d) ro . of this. EF (c) which will bave trbs fame Poles. Therefere let tbeir Poles be G, H, and draw the right Line GH , (d) which - willpafs thro' 1, the Center of the 'Sphere, and thro' K, L, M, the Centers of the Circles, and alfo will be perpendicular to the Circles $A B, C D, E F$. Therefore beciaufa the (e) 6. r. of Circles $A B, C D, E F$, are equal, they (e) will be e this.

THEO. III. PROP. llI.

If two Circles in a Spbere, cut in the fame Point, the Circumference of a great Circle, pafjing tbro' their Poles, thefe Circles will snutually toucb one anotber.

LET the two Circles AB, AC, cut in the Point A, the Circumference of the great Circle ABC, paffing thro' their Poles. I fay the Circles AB, AC, mutually touch one another in the Point A. For becaufe the great Circle $A B C$, paffes thro' the Poles of the Circles (a) 15. I. AB , AC , (a) it will bifect them at right Angles,
of this. the Circles $A B_{2} A C$, viz, the right Lines $A B, A C$, will

Book II. The Spbericks of Theodofius.

be the Diameters of the Circles $A B, A C$. Let alfo the common Section of the Plans, in which are the Circles $A B, A C$, be the right Line $D E$, which will pals throw the Point A, because the Plans are fuppofed to cut the Circle ABC, in A. Now fence the Plan of the Circle ABC , has been proved to be at right Angles to the Plans of the Circles AB, AC, the Plans of the Cirles $A B, A C$, will be likewise at right: Angles to the Circle ABC; (b) and therefore DE, their common (b) 19.11 . Section, will be perpendicular to the Plan of the Circe $A B C$, whence alto it will be perpendicular to the Diameters AB, AC, in the fame Plan, from Def. 3. Lib. 11. Euclid. (c) Wherefore DE, touches both the Circles AB, AC, in A ; and accordingly, by the De- ${ }^{1} 6.3$. finition of this Book, the Circles $A B$, $A C$, mutually touch one another in the Point A. Q. E. D.

THE. IV. PROP. IV.

If two Circles in a Sphere mutually touch each other, a great Circle drawn tbro' their Poles, will pass tyro' their Point of Contact.

L ET the Circles $A B, C B$, in a Sphere, mutually Fig. 3^{8} the Circle AB other in B; and then D. the Pole of there be (a) defrribd the great CircleDE.I fay the Circle (a) 20. 1\%: DE, paffes tho the Point of Contact B. For if it of this. does not pass tho B the Point of Contact, levit cut the Circumference, for Example, of the Circle CB, in F . Now from the Pole D, and with the diftance DF, defrribe the Circle FG, which because it is deforibd with a greater diftance, than the Circle AB , is, it will cut the Circle CB , in F . But becaufe the two Circles BF, GF, in a Sphere, cut in the fame Point F, the great Circle DEF, defcribed thro' their Poles, the two Circles GF, CF, (b) will touch one another in F: But they will ${ }^{(b)} 3$. of Jikewife mutually cut one another in F . Which is abford. Q: E. D.

THEO. V. PROP. V.

If two Circles in a Spbere mutually toucb one anotber, a great Circle defcrib'd tbro' the Poles of one of them, and their. Point of Contact, will alfo pajs thro' the Poles of the otber Circle.

Fig. 39. LT the two Circles $A B, C B$, in a Sphere, mutually touch one another in B, and let D, E be their Poles. I fay a great Circle defrib'd thro' D, the Pole of the Circle AB, and the Point of Contact B, alfo paffes thro' E, the Pole of the Circle CB. For if it can'be, let it not pals thro' E; cur thro fome other Point F, and (a) 20. I. fo DBF will be a great Circle. Nowhaving (a) defcribof thes." ed the great Circle DE , thro the Poles $\mathrm{D}, \mathrm{E},(b)$
(b) 4 of
which will paiss this. (c) ri. of great Circles DBF, DBE, will mutually (c) bifect one this. another in D, B. Therefore each Arc DB, will be a Semicircle. But becaufe a great Circle paffing thro one
(d) Cor. of the Poles of any Circle in a Spheré, alfo (l) paffes ro. I. of thrn' the other Pole, and there is a Semicircle of a great
this.

THEO. VI. PROP. VI.

If a great Gircle in a Sphere toucbes anotber Circle defcrib'd in it's Suserficies, the faid great Circle may alfo toticb anotber Circle equal and parallel to it.

Fig. 40. LET the great Circle $A B$, in a Sphere, touch the Cirs cle $A C$ in 'A. I fay the Circle $A B$ may alro touch anothet another Circle, equal and parallel to AC. For let D, be the Pole of the Circle AC: (a) And thro' D, A, de- (a) 20. r. fcribe the great Circle DA: Which, becaufe it paffes thro' of this. D, the Pole of the Citcle AC, and the Point of Con- (b) 5. of tact A, (b) will alfo pafs thro the Poles of the Circle AB . And affuming E , the other Pole of the Circle AC , draw the right Line DE, (c) which will pafs thro the of this. Center of the Sphere. And therefore will be a Diameter of the Sphere. Now from the Pole E, and with the diftance EB, defrribe the Circles BF. I fay the great Circle AB , likewife touches the Circle BF in B, and the Circle BF, is equal and parallel to the Circle AC. For becaufe the right Line DE, (d) paffing thro' the Poles (d) ro. Io of the Circles AC, BF, is perpendicular to thofe Circles. (i) The Circles AC, BE, will be parallel. (f) (f) I4, 1 I : Again, becaufe great Circles ina Sphere mutually bifect of (f) 1f. i. each other, ACB , will be a Semicircle; and fo equal to the Semicircle DCE. Therefore the common Arc BD, being taken away, there will remain the equal Arc's DA, $\mathrm{EB} ;(\underline{g})$ and therefore right Lines DA, EB, drawn from (g) 29.3. the Poles D, E, to the Circumferences of the Circles AC, BF, will be equal. (b) Wherefore the Circles AC, BF, (b) Schol. are equal. Finally, becaufe the Circles AB, BF, cut the ${ }^{2}$ I. I. of great Circle AEB, in which are their Poles, in the Point this. B, (i) they will mutually touch one another in the faid t (i) 30 of Point B. Wherefore the great Cicle $A B$, touching the Circle AC, in a Sphere, alfo touches the Circle BF, e qual and parallel to AC. Q. E. D.

COROLLAR .

From hence it is manifeft, that the Points of Contact, A, B, are diametrically oppofite. For it has been proved that $A C B$, is a Semicircle, and accordingly a right Line drawn from A to B, is a Diameter of the Sphere, or of the great Circle ACB.

THE. VII. PROP. VII.

If there are in a Sphere two equal and pa. rallel Circles: a great Circle, tourbing one of them, will likewise touch the other.

INN the lat Figure let there be two equal and parallel Circles, $A C, B F$, and let the great Circle $A B$, touch the Circle AC . I fay AB , aldo touches BF . For if AB ,
(a) 6 . of this. does not touch BF, (a) let it touch forme other Circle equal and parallel to AC . Therefore fince BF , alpo is equal to AC, and parallel, there will be three Circles in a S here, viz. $A C, B F$, and that other which $A B$, touches equal between themfelves, and parallel. Which is ab(b) School- ford. (b) For there can be but two Circles, equal, and 2.0f this. parallel, in a Sphere. Q. E. D.

SCHOLIUM.

The following Theorem is demonfrated in the other Vierfion.

Parallel Circles in a Sphere, which fome great Circle touches, are equal betwen themSelves.

Still in the laft Figure, let there bo two parallel Circles AC, BF, which the great Circle $A B$, touches in A, B. I lay the Circles $A C, B F$, are equal to each $0-$ thee. For because the Circles AC, BF are fuppofed (c) 1. of parallel, (c) they will have the fame Poles, which let be
bis. this. I. D, E; (d) tho which and the Poles of the Circle $A B$, (d) 20. r.i
of this. there be defcrib'd the great Circle $A F B$, (e) which of this.
(e) 4. of will pals thro the Points of Contact A, B. But bethis. cause great Circles of a Sphere mutually bisect each other, $A D B$ will be a Semicircle, and therefore equal to the Semicircle DBE. Wherefore taking away the common Arc $D B$, there will remain the Arc's $D A, E B$, (f) 29. 3. equal; (f) and accordingly right Lines $D B_{2} E b$, drawn from

Book II. The Spbericks of Theodofius.

from the Poles D, E, to the Circumferences of th: Circles $A C, B F$ will be equal. (g) Wherefore the Circles $A C_{9}(d)$ School. $B F$, will be equal. Q. $E . D$.

THE. VIII, PROP. VIII.

If a great Circle in a Sphere be oblique to Some other Circle of the Sphere, it may touch two Circles, equal to one another, and parallel to the aforesaid Circle to which it is oblique.

LET the great Circle $A B$, in a Sphere, be oblique to Fig. 4I. any Circle, as CD. I fay the Circle $A B$, may touch two equal Circles, and parallel to CD. (a) For let, F, (a) 2 I . r. be the Poles of the Circle CD, (b) thro' which and the of this. Poles of the Circle $A B$, let the great Circle EAB, be de- (b) 20 . Io fcribed, cutting AB, in A, B. Moreover from the Pole E , of this. and with the diftance EA, let the Circle AG be defrribed. Then becaufe the Circles $A B, A G$, cut the great Circle EAB, in which are their Poles, in the Point A, (c) they (c) 3. of will mutually touch one another in the faid Point A. this.! Therefore the great Circle $A B$, touching the Circle, $A G$, (d) may touch another equal and parallel to it, which $(d) 6$. of let be BH . But becaufe the parallel Circles $\mathrm{AG}, \mathrm{BH},(\Omega)$ this. have the fame Poles, E, F : And E, F are likewife the this. Poles of the Circle CD; the three Circles $A G, C D, B H$, will have the fame Poles; (f) and therefore they will (f). . of be parallel between themfelves. Wherefore the great Circle AB , touches the two Circles AG, BH, equal be. tween themfelves, and parallel to $C D$, which is obique to the great Circle. Q. E. D.

SC H OLIUM.

This Theorem is here added, in the other Verfion.
If a great Circle in a Sphere, touches rome Circle in the fame, it will be oblique to tho fe Cir- cles it cuts, which are parallel to the Circle it touches.

In the laft Figure, let the great Circle $A B$, touch the Circle AS, but cut the Circle CD, parallel to AG. I fay the Circle $A B$, is oblique to the Circle $C D$. For $b s-$ cuufe the great Circle $A B$, touching the Circle $A G$, does not parfs thro' its Poles (for if it /hould pafs thro'
(a) 15. I. it. Poles, it (a) would bifect it, and not touch it.) And
of thers therofore nerther thro' the Poles of the Circle CD; (b)
(b) I. of
(b) I. of
this.
(c) I3. I. the great. Circle $A B$, will not cut the Circle CD, at
of ther. Ant Angles: (c) Otherwife it pafjes thro its Poles. Therefore it is oblique to the Circle CD, Which was propofed.

T HE O. IX. P R O P. IX.

If two Circles in a Spbere mutually cut one anotber, a great Circle drawn thio their Poles, woill bifect the Segments of thofe Circles.

Fig. 12. ET the two Circles $A B C D, E D F B$, in a Sphere mutu(a) 20. I. Li ally cut one another, in the Points B, D, and (a) let
of this. of this.
(b) $15 . \mathrm{I}$. of this. there be defrib'd thro' their Poles the great Circle AF CE, cutting the faid Circles, in the Points A, C, E, F. I ay the Circle AFCE, bifects theSegments BAD, CD, EED, BFD. (b) For becaufe the great Circle AFCE, bifects the Circles A CDD , EDFB, at right Angles, as being drawn thro' their Poles, the common Sections $A C$, EF, which it makes with them, will be their Diameters croffing one another in G. For the right Lines $A C$, EF mutually interfect each other, becaufe they are both in the Plan of the Circle AFCE, and the Point F is between the Points A, C; and the Point E, between the fame Points. Now draw the right Lines BG,D G; then the three Points B, G, D will be in the Plans of both the

Circles $\mathrm{ABCD}, \mathrm{EDFB}$; and fo in their common Section :
(c) But their common Section is a right Line. There- (c) 3. Ir. fore BGD, will be a right Line. And becaufe the Circle AFJE, has been proved to cut both the Circles ABCD EDFB, at right Angles; both thefe Circles will reciprocally be at right Angles to the Circle AFCE, (?) (d)29.ir. and therefore BD, their commonSection will be perpenddicular to the fame. VVherefore the Angles BGA, IGA, BGC, DCC, will be right ones, from Def. $3 \cdot$ lib. ir. Euclid. VVherefore fince the Diameter AC, paffes thro' the Center of the Circle ABCD , and cuts the right Line BD at right Angles, it (e) will bi-(e) $3.3 \cdot$ feet it. There ${ }^{e}$ ore becaufe the Sides AG, GB, are equal to the Sides $A G, G D$, and contain equal Angles, namely right ones, (f) the Bafes A, AD, fubtending $(f) 4$. r: the Arc's \AA, $A D$, will be equal, ((δ) and fo likewife ($($) 28. 3the Arc's $A B, A D$. In the fame manner we demonftrare that the Arc's ($B, C D$, are equal; as allo the Arc's EB, ED; and FB, FD. Therefore the Circle $A F C$, bifects the Segments $B A D, B C D, B E D, B F D$. Q. E. D.

SCHOLIUM.

There are bere added, in the other Verfion, thefe two other Theorems, viz.
I.

If Circles in a Sphere mutually cut one another; fome other Circle, bifecting their Segments, will pafs thro' their Poles, and be a great Circle.

In the laft Figure, let the two Circles $A B C D, E D F B$, mutually cut one another in the Points B, D, and let another Circle, as $A F C E$, bifect the Serments BAD, $B C D$, BED, BFD. I fay the Circle AFC, pafles thro their Poles, and is a great Circle. For becaufe the Arc's $A D, A B$, are equal, as alfo $C D, C B$; the whole Arc's $A D C, A B C$, will be equal, and accordingly Semicircles. And in the fane manner EDF, EBF, will be Semicircles. Therefore the Circle $A F C E$, bifects. the

Tbe Sphericks of Theodofius. Book II. the Circles $A B C D, E D F B$, and fo the common Seetions $A C$, $E F$, interjecting each otber in G, are their Dianieters. Now the right Lines $B G, D G$, being drawn, becaufe the three Points B, G, D, are in bath the Plans of the Circles $A B C D, E D F B$; anulo in their common Section,
(a) 3. II. (a) which woll be a right Line, $B G D$ is a right Line. (b) 29. 3. but becaufe the right Lines $D A, D C$, are equ l to the right Lines $B A, B C$, becaufe of the equal $A r c ' s$, and (c) 21. 3 . contain equal Angles, (c) to wit, rir bt ones, as being
(d) 4. I. in Seinicircles; (I) the Angles D $A C, B A C_{2}$ will be squal. Which likewife may be tbus proved Becaufe the Siles $D A, A C_{2}$ are equal to tha Sides $B A, A C$, and the (e) 8. I. Bafe $D C$, equal to the Bafe $B C$, (e) the Ansles $D A C$, $B A C$, will be equal. Again, becaufe th, S. des $A D_{2}$ $A G$, are equal to the Sides $A B, A G$, an l contain $e-$ qual Anyles, as bas been proved; the Angles AGD,
(f) 4. I. $A G B$, (f) will be equal, and accorlingly right ones. Therefore $B G D$ is propnilicular to $A C$. In t.be fame manner, it may be proved, that the faid right (g) 4. II. Lins BGD, is perpsnilicular to EF. 'g Wierefore the faid BGD, will be perpendicular to the Plan of the Circle AFCE, drawn thro the right Lines $A C, E F$; (b) IS.II. (b) and accordingly both the Plans of the Circles $A B C D$, EDFB, drawn thro the righ Line BGD, will be at right Angles to the Plan of the Circls AFCE: Whence reciprocally the Circle AFCE, is at right Angles to the Circles $A B C D, E D F B$. Therefore the Circle $A F C E$, will bifect the Circles $A B C D, E D F B$, at right Angles. (i) Wherefore it pill be a great Circle
(i) Schol. 15. I. of this:

II.

If two Circles in a Sphere mutually bifect each other, a great Circle bifecting any two of their Segments, not having the Arc interpofed between thofe Segments, equal to a Semicircle; will pafs thro' their Poles, and bifect the two other Segments.

Fig. 43.
Let the two Circles $A B C D, E B F D$, mutually inter \int ec. one another in the Points B, D; and let the great Circle

Book II. The Spbericks of Theodofius.

cle $A F C E$, cut any tro Segments of tben, to wit, $B A D, E E D$, in half in the Points A, E, fo that the Arc AFCE, intercepted between the foid Segments be not a Semicircle. 1 fay the Circie AFCE, paffes through the Poles of the Circles $A E C D, E E F D$, and cuts the other Segments BCD, BFD, in balf. For if the Circle ACE, does not pafs througb their Poles, let there be deefiribed, if pojpijle, another great Circle, as AGE, through their Poles, (a) which will biject their Seg. (a) 9. of monts. and fo will pars throurb the Points A, E. (b) this. Wherefore the great Circles. $A F C D, A G E$, will cut each of this. other in balf in A, E : and accordingly $A F C E$, will be a Semicircle: Which is contrary to the Hypotbe/is. Therefore the Circle AFCE, palfes through the Poles of the Circles $A B C D, E B F D$. (c) Wherefore all the Serg- (c) 9 . of ments of them will be bifected. Q.E. D. this.

THEO. X. PROP. X.

great Circles in a Spbere are defcribed tbro' ithe Poles of parallel Circles; the Arc's of the parallel Circles, intercepted between the great Circles, are fimilar; and the Arc's of the great Circles intercepted between the parallel Circles, are equal.
ET there be in a Sphere, the two parallel Circles ABCD EFGH, the Pole of which is \mathbf{I}; (a) (for parallel Circles have the fame Poles.) And thro' 1, this. any how defcribe the great Circles AEIGC, BFIHD. I fay the Arc's of the parallels $A B, E F$, are fimilat, as allo BC, FG; likewife CD, GH; and $\mathrm{DA}, \mathrm{HE}:$ But the Arc's of the great Circles viz. AE, BF, CG, DH being between the parallels, are equal. For let the common Sections of the Gircle AIC, and the Parallels be the right Lines AC, EG, (b) which will be parallel ; and (b):16. II, the common Sections of the Circle BID, and the fame Parallels, let be the right Lines B: FH, which likewife will be parallel. Then becaufe the great Circles AIC,

AIC, BID, defcribed through the Poles of the Parallels,
(c) 15. I. (c) bifect the faid Parallels; AC, BD, will be Diame-
of this. ters of the Circle $A B C D$, and the Point L , wherein they interffet will be the Center of the fame Therefore becaufe the right Lines EK, KF, are parallel to the
(d) 10 ir. right Lines AL, LB, and are in different Plans, (d) the Angles EKF, ALB, at the Centers K, L, will be equal. Wherefore by Sclol. Prop. 22. Lib, 3. Euclid, they will be fimilar. And in the fame manner, will BC, FG; and CD, GH : as alfo DA, HE, be fimilar, Again, becaufe right Lines drawn from 1, to A, B,
(e) 28.3. C, D, are equal; (e) the Arc's IA, IB, IC, ID, will be equal: And fo likewife will IE, IF, IG, IH. Therefore the remaining Arc's $\mathrm{AE}, \mathrm{BF}, \mathrm{CG}, \mathrm{DH}$ will be equal. Q.E.D.

THEO. XI. PROP. XI.

If equal Segmeuts of Circles are erected at right Angles, on the Diameters of equal Circles, in the Circumferences of wobich Segments, are affumed equal Arc's, eacb of which, reckoning from the Extremity of its Segment, is leffer tban balf the Circumference of the rebole Segment; and if from the Points ierminating the aforefaid equal Arc's, are drawn equal right Lines to the Circumferences of the equal Circles, the Arc's of the faid Ci.cles, intercepted between thofe rigbt Lines, and the Extremities of their Diameters, will be equal.

Fig $45 \cdot L$ ET the equal Segments AGC, DHF, be at right Angles on rhe Diameters $A C, D E$, of the equal Circles $A B C, D E F$; and affume the equal Arc's $A G$, DH, fo that the Points G, H, may not cut the Segments AGC , DHF, fin half. Lafly, let the equal right

Eines

Book II. The Sphericks of Theodofius.

Lines GB, HE, fall on the Circumferences of the equal Circles $A B C, D E F$. I fay the Arc's $A B, D E$, are equal. (a) For draw from G, H, the right Lines GI , (a) Ir.Ir. HK, perpendicular to the Plans of the Circles ABC, DEF, (b) which will fall in the Po:ts I, K, of the (b) 38 : In common Sections AC, DF. Likewif: having affumed the Centers L, M, of the Circles $\mathrm{ABC}, \mathrm{DEF}$, draw the right Lines LB, BI, AG; ME, EK, DH; and firf, let the Points \mathbf{I}, K, fall in the Semidiameters AL_{3}, DM. Therefore becaufe the Arc's.AGC, DHF, are equal, and alfo the Arc's AG, DH; likewife the Are's CG, FH will be equal; (c) and accordingly the Angles (c) 27.3 : GAC, HDF fanding upon them, are equal. But the Angles AIG, DKH, are alfo equal, as being right ones, from Def. 3. lib. I1. Euclid. Therefore the two Triangles AIG, DKH, have the two Angles GAI, AIG, equal to the two Angles HDK, DKH. (d) They have (d) 29.30° likewife the fide AG, equal to the Side DH (becaufe of the equality of the Arc's AG, DH.) Therefore (e) the (e) 26. I. Side AI, will be equal to the Side DK, and the Side DI, to the Side HK. But becaufe the Angles GIB, HKE are right ones, from Def. 3. II. Euclid, (f) the Squares (f) 47. Io of GB, HE; which are equal to one another (becaufe of the equality of the right Lines GB, HE) will be equal to the Squares of GI, IB, and of HK, KE. Therefore taking away the equal Squares, of the equal right Lines GI, HK, the Squares of the right Lines $\mathrm{IB}, \mathrm{KE}^{2}$ will remain equal; and fo the right Lines I3, KE , are equal. And hecaufe the Semidiameters AL, DM, of equal Circles, are equal: and AI, DK, have been proved to be equal, likewife IL, KM, will be equal. Wherefore the Sides $1 \mathrm{~L}, \mathrm{LB}$, will be equal to the Sides KM , ME : But the Bafes $I B, K E$, have been proved equal. (g) Therefore the Angles L, M, at the Centers, will be (g) 8. I: equal; (b) and accordingly the Are's AB DE, will be equal. (i) 26.3.

Again, let the Points I, K, fall in the Semidi- Fig. 47° : ameters LA, MD, produced towards A, D: Which may happen, when the Segments $A G C, D H F$, are greater than a Semicircle; and make the fame Confruction, as before. (i) We demonftrate, as at firf, that the (i) 27.3. Angles GAC, HDF, are equal; and accordingly $\cdot k$) be- $(k) 13.1 \cdot$ caufe, as well $\mathrm{GAC}_{2} \mathrm{GAI}_{2}$ as $\mathrm{HDF}, \mathrm{HDK}$, are equal to two right Angles; GAI, HDK, will be equal. And therefore becaufe the Angles at I, K, are equal, viz. (l)29.3. right ones, (l) and the Sides GA, HD, equal, (becaufe (m) 26. I. of the equal Arc's AG, DH.) The (m) right Lines GI, IA, will be equal to HK, KD, as before; and ac-
(n) 47. I. cordingly IL, KM, will be equal. (n) Therefore, as (o) 8. I. at firft, the right Lines IB, KE, are equal, (o) and the (p) 26. 3. Angles $\mathrm{L}, \mathrm{M},(p)$ and finally the $\operatorname{Arcs}, \mathrm{AB}, \mathrm{DE}$.
Fig. 49. Thirdly, Let the Perpendiculars, drawn from G, H, 50. to the Plans of the Circles ABC, DEF, fall in the Points A, D, which may alfo happen when the Segments AGC. DHF, are greater than a Semicircle. Therefore having drawn the right Lines AB, DE, the Angles GAB, HDE will be right ones, from Def. 3. lib.
(q) 47. I6 II. Euslid. (q) Wherefore, as at firft, the Squares of the right Lines GA, AB, will be equal to the Squares of the right Lines HD, DE: But the Squares of GA, HD , are equal. (r) (Becaufe $G \mathrm{~A}, \mathrm{HD}$, are equal, and
(r) 29.3. the Arc's AG, DH.) Therefore the Squares of AB, DE, will be equal; and accordingly the right Lines AB, DE, (s) $28.3:$ are alfo equal. (s) VVheretore the Arc's $A B, D E$, will be equal. Q. E. D.

THEO.

THEO. XII. PROP. XII.

If equal Segments of Circles are Set up at rigbt Angles on the Diameters of equal Carcles, in the Circumferences of which Segments are affumed equal Arc's, leffer than balf the Circumference of the Segments: And if there are taken equal Arc's in the equal Circles, beginning from the Extremities of the Diameters, on the Same Side; right Lines drawen from the Points in the Circlimferences of the Segments, to the Points in the Circumferences of the Circles, weill be equal.

Epeating the Figures of the laft Propofition, with
the fame Conftructions, let the Arc's $A B, D E$, be equal. I fay the right Lines GB, HE, are alfo equal. For becaufe, as in the precedent Propofitions has been demonfrrated, the right Lines AI, IG, are equal to the right Lines DK, KH; the Lines IL, KM, will be equal. Therefore becaure IL., LB, are equal to the right Lines KM, ME; and (a) contain the Angles atL, M, equal, be- (a) 27,3 , caure of the equality of the Ar's AB, DE; (b) the $\mathrm{Ba}-(a)$ ($)$ 2, 3 fes IB, KE, will be equal. Wherefore becaure the Sides, GI, IB, are equal to the Sides HK, KE and contain the equal Angles GIB, HKE, namely right ones, from Def. (c) 4 . ro 3. Lib. 11. Euclid. (c) the Bares GB, HE will be equal. VVhich was propofed. This is eafily demonfrated when the perpendiculars drawn from G, H, to the Plans of the Circles $\mathrm{ABC}, \mathrm{DEF}$, fall in the Points A, D, as in Fig. 49 . 50. (d) For fince the right Lines GA , AB , are equal to (d) 29.3^{3} HD, DE, becaufe of the equal Ar's $\mathrm{AG}, \mathrm{DH}: \mathrm{AB}, \mathrm{DE}$, and contain equal Angles, viz. right ones. From def. 3. ${ }^{\text {lib. II. Euclid, (e) the Bafes }} \mathrm{GB}$, HE will be equal. (c) 4. so Q. E. D.

H 2
THEO:

T H E O. Xilt. PR O P. XIII.

If ibere are parallel Circles in a Sobere, and great Circles are defcribed which toucb one of the Parallels, and cut the otbers; the Arc's of the Parallels intercepted between thofe Semicircles of the great Circles, that do not concur, weill be fimilar; and the Arc's of the great Circles inter cepted between any two Parallels, will be equal.

Fig. 5I. ET there be in a Sphere the parallel Circles $A B, C D E$, 52. FiHH, (a) which will have the fame Pole, to wit (a) I. of I. And let the great Circles AFK, BHK, touch the this. Parallel $A B$, in the Points $A B$, and cut the others in the Points $F, C, L . M: H, E, D, G$, and themfelves in K, N; fo that KMN, NFK; KGN, NHK, are Se(b) Ir. I. micircles. (b; For great Circles mutually bifect each oof this. ther. Alfo affume the Arc KP, equal to the Arc NB, and KO , equal to the $\operatorname{Arc} \mathrm{NA}$, that AMO, OFA, BGP, IHB, may be alfo Semicircles. Therefore the Semicircles AMO, BHP, do not concur, becauíe they do not mutually cut one another. (There Semicircles are cut off from the Circles AIRO, BIIP, as appears in Fiz. 51. But in Fig. 52, the Circles AI, BI, produced thro' R, I, are fuprofed to pafs thro' O, P, that they may cut of the fame Semicircles.) In the fame manner the Semicircles BGP, AFO, will not concur. Now I fay the Arc's of the Parallels AB, LE, MH, intercepted between the Semicircles AMO, RHP, which do not concur, are fimilar; as alfo the Arc's $\mathrm{AB} C D, F G$, intercepted between the non-concurring Semicircles BGP AFO, are fimilar: But the Arc's of the great Circles $A C, A L, B D, B E$, ate equal ; as alfo the Arc's CF, LM DG, EH; whereof the former are interpofed betweer the Parallels $A B, C D E$, and the latter between the Parallels CDE, FGH: and in the fame manner are the Arc's AF, AM, BG, BH2 interceptedbetween the Paralo Iels, $A B_{2} F G H$, equal.

(c). For through the Pole I, and the Points of Con- (c) 20. r. tact A, B, deicribe the great Circles QAIR, SBIT, cut- of this. ting the Parillel in $\mathrm{Q}, \mathrm{S}, \mathrm{V}, \mathrm{X}$. There great Ciccles (d) 5 . of (d) will alfo pa/s through the Poles nf the Circles AFK, this.

BHK ; and accordingly t) will bifet the Segments CAL, (e) 9. of IBE, CVL, DXE : as allo the Segments FAM, GBH, this. FQM, GSH. (f) Refides the aid Circles will cut the (f) I5. I. Paraliel AB, CDE, FGH, and the great Circles AFK, of thes. BHK at right Angles. The efore becaufe equal Segments of Circles are at rivht Angles on the Diamete's of the equal Circles AFK, BHK, viz. the Semicircles beginning from the Points A, B, and paffing thrcugh I, until they again cut the Circles AFK, BHK, i:1 the Points O, P, as in Fig. $52 ;(g)$ and the Arc's AI, BI, are equal, (hecaufe from $(g) 28.3$. the Def. of a Pole, right Lines IA, IB, are fuch, which are leffer than half the Semicircles: For becaufe they are half the Arc's AIR, BIT, fince from the Def. of a Pole, right Lines drawn from I , to the Points A, B, R, T, are equal, and (b) therefore alfo the Arc's are e-(b) 28.3. qual: But the Arc's AIR, BIT, are leffer than Semicircles, becaufe the Semicircles tend from A, B, thro' I, to the Circles AFK, BHK; the Arc's AI, BI, will be leffer than half the Semicircles) and alfo right Lines IC, IE, equal, from the Def. of a Pole, (i) the Arc's AC, BE, (i) rr. of will be equal. But $A C$, is equal to $A L$, and $B E$ to this. $\mathrm{BD},(k)$ becaufe the Arc's CAL, DBE, sare bifected, as $(k) 9$. of has been proved. Therefore the four Arc's AC, AL, BE, this. BD , are equal. We demonftrate in the fame manner, that the Arc's $\mathrm{AF}, \mathrm{AM}, \mathrm{BG}, \mathrm{BH}$, are equal ; and accordingly alfo the other Arc's CF, LM, EH, DG, each of which are intercepted between two Parallels. Which was in the fecond Place propofed to be demonffrated.

Again, becaufe the whole Arc's CAL, DBE, are cqual, fince their Halves are fo, as has heen proved; (l) (l) 29.3. Subtenfes CL, DE, will be equal, which likewife fubtend the Arc's CVL, DXE; (m) and accordingly the (m) 18.30 Arc's of the Parallels CVL, DXE, will be equal. (n)(n) 9 of Therefore becaufe they are bifected in V,X, as has been this. faid, their Halves will be equal, viz. the four Arc's CV, VL, DX, XE. If therefore the common Are, VD, is added, or taken away, as in Fig. 52 , to the cqual Arc's $C V, \mathrm{DX}_{2}$ the Arc's CD, VX_{2} will be equal: (0) But (o) ro. of the this. CD , will be fimilar th the faid AB . By the fame way of reafoning it may be proved that FG, is fimilar to the faid AB; as alfo the Arc's EL, HM, are fimilar to the faid $A B$. Which was firft propofed to be preved.

S C H OLIUM.

The non-concurring Semicircles ought to begin from the Points of Contait A, B : Such are AMO, BHP. Wherefore becaufe there are two Semicircles of a great Circle betwesn the Points of Contact of two oppofite parallels, the Semicircles of two Circles cutting one anoiber muft not be affumed between the Points of Contact of two Parallels, but one muft be affuned towards that Point of Section, and the other declining towards the other fide; So that the Convexity of one may anfwerlto the Concarnity of the other, and contrariwife, as appears in the afore faidtwo Semicircles. For if there be taken two Se micircles $A M O, D K r$, (affuning the Arc $K X$, equal to $D N$,) not concurring the Arc's DL, GM, will not be fimilar. Otherwifetwo great Circles drawn through the Pole I, and the Points D, L, will pafs through the Points G,M: Becaufe, from roth. of this, they intercept fimilar Arc's; wbich cannot be. For DG, LM, are Semicircles: Becaufe by 1 ith. of the firft of this, great Circles biject one another.

PROB.I. PROP. XIV.

A leffer Circle in a Sphere being given, as alfo a Point in its Circumference; to defcrile a great Circle thro' that Point, toucbing the faid leffer Circle.

Fig. 53. L ET AB, be a given leffer Circle in a Sphere, whofe thro' A, a given Point in its Circumference, which fhal! touch

Book II. The Sphericks of Theodofius. touch the Circle AB. (a) Defcribe the great Circle (a) 2 r. x. CADEB thro the Pole C, and the Point A; in which of this. affume the Quadrant AD , and from the Pole D , with the Diftance DA, (b) defcribe the Circle AE, which will (b) 17. E. be a great one, becaure a Subtenfe DA, is the Side of a of this. Square infcribd in a great Circle. Now I fay the great Circle $A E$, touches the Circle $A B$, in A. For becaufe the two Circles $A B, A E$, cut the Circle CAD paffing thro' their Poles, in the Point, A, (c) they will mutually ${ }_{\text {this }}(\mathrm{c})$. 3. of touch one another in the Point A. Q. E. F.

PROB.II. PROP. XV.

A leffer Circle in a Spbere being given, and alSo Some Point in its Superficies, wbich is betreeen the given Circle and anotber equal and parallel to it; to defcribe a great Circle tbro' that Point, toucbing the given lejSer Circle.

LET AB, be a given leffer Circle in a Sphere, to which $C D$ is equal, and paralle!, and let G be the given Point, between the two given Circles $A B, C D: I t$ is required to draw thrn' G, a great Circle, touching the Circle AB. Let E, F, be the Poles of fhe Parallels AB, CD, (a) (for Parallels have the fame Poles) and (b) defribe thro E, G, the great Circle EAC, which will pars (a) I. of thro' the other Pole F (from Coroll. of Schol. Prop. 10.this. lib. I. of this) in this affume the Quadrant BH; and of this. whither the Point H , falls above D, in D , or below D , (c) proceed thus. From the Pole E, with the Diftance E, H, or from the Pole F , with the Diftancef FH , defribe ${ }^{(c) \text {) } 2 . \text { of }}$ the Circle HI , which will be parallel to AB, CD, and be above CD , or the fame as CD , or Lafly will be below CD , according as the Point H , is pofited above D , in D_{2} or below D. will he beyond H, becaufe GH , is lefier than a Quadrant. Moreover from the Pole G , with the Diftance GK , defcribe (d) 57.1 . of the Circle KL , (d) which will be a great one, becaule a this.
(e) 2n. I. cut the Circle HI , in L , (e) (for it will neceffarily cut of this. it, becaule the Point K , is below H , and does not come (f) schol. to I. (For becaule the Parallels AB, CD, are equal (f) 21. of this. fight Lines EA, FD, will be equal) ; $(2$ and according(g) 28.3 ly the Arc's AE, DF, will ke equal. Therefore adding the common Arc AF, the Arcs EAF, AFD, will be cqual; and confequenty fince AEF, is a Semicircle between the Poles E, F; AFD will alfo be a Semicircle. (b) Io.of But AI, is a Quadrant; (b) becaufe it is equal to the this. Quadrant PH ; wherefore ID will be a Quadrant ; and accordinglydG will be greater than a Quadtant. Therefore affuming the Quadrant GK; the Point K , will fall below H , bat will not come to I. Whence the Circle H, is cut by the Circle KL,) and thro' L, F, defcribe the great Circle RL, which will pafs thro the other Pole E_{2} (from Corol. Scbal. Prop. 1o. Lib. I. of this.) and let this (i) 10. of Circle FLE, cut the Circle AB in M. (i) Now the Arc's this. ML, BH, of the great Circles paffing thro' E, F, the Poles of the Parallels, intercepted between the Parallels AB, HI, are equal ; and accordingly BH being a Quadrant hy Confruction LM, will alro be a Quadraut. Therefore from the Yole L with the Diftance LM, (k) 17. I. defcribe the Curcle MN, (k) which will be a great one, of this. fiace a right Line fubtending the Q padrant $L \mathrm{M}$, is equal to the Side of a Square infcribed in a great Circle. But becaufe the great Circie KL, paffes thro' L, the lonle of the great Cirte NM, fo reciprocally will the great Cirt (l) Scho1. cle NM (l) pars thro G, the Pole of the Circle KL: 15. I. of and confequently the great Circle NM_{2} will pafs thro': this: the given Point G. Now I fay it likewife touches the Circle in M. For becaufe the Circles AB, GN, cut the great Cucle GF in the Foint M, in which are their Poles, (m) 3. of (sy) they mutually touch one another in M. Therefore shis. there is defrib'd thro' G , the great Circle $\mathrm{GN}_{\text {, }}$ touching the Circle $A B$ in M. Q.E.F.

Book II. The Sphericks of Theodofius:

SCHOLIUM.

If the Point G is given exactly in the middle of the Arc BD; GF will be a Quadrant. For then if there are added the Arc's $B E, D F$, which (n) are equal, to (n) 28. 3; the equal Arc's CB, CD, the Arc's CE, GF, will be equal; and accordingly $E G F$, being a Semicircle between the Poles E,F; GE, GF, will be Quadrants. Therefore from the Pole G, and with the diftance GF, the Circle EF being defcribel, will cut HI, in the Point L, which again will be the Pole of the toucbing Circle, as before: But if the given Point G, is the fame as D, the Pole of the toucting Circle will be in the middle of the Arc DCA, becaufe this Arc is a Semicircle. And the Circle defcribed from that Pole, touches $A B$ in A_{3} and CD, in D; fince this great Circle, and the Parallels $A B, C D$, cut the Circumference of the great. Circle $A C D B$, in the Points A, D.

But becaufe, as L, bas been proved to be th? Pole of. the great Circle GN, touching the Circle AB, To aifo it may be demonftrated, that another Point, in wobich the great Circle KL, cuts th? Circle Hi on the otber Side is the Pole of fome otber great Circle, whicb shay pafs. through G, and touch the Circle $A B$, in another Point. Whence it is manifeft, there may be def cribed twogreat Circles, through a given Point in a Spbeire, between two equal and parallel Circles; which may touch the Circle $A B$, in two Points.

THEO. XIV. PROP. XVI

Great Circles in a Spbere, cutting off fimilar Arg's from parallel Circles, eitber pafs tbro' the Poles of thoje Parallels, or touch fome one Parallel.

L ET the great Circles in a Sphere $A B C$, DBE, cut Fig. 5\%. of from the Parallels ADC, FG, the fimilar Arc's $A D_{2} F G$. I fay the great Circles $A B C$, $D B E$, either pals through the Poles of the Parallels, ADC, FG, or touch fome one parallel. For cither one of them, viz. AEC, paffes through the Poles of the Parallels, and fo we prove the other pafies through the fame, or does not pafs through the Poles of the Parallels, but touches one of them, and fo we fhall demonftrate, the other touches the fame; or finally, it will not pafs through the Poles of the Parallels, nor touch one of them ; which being granted, we conclude that the given great Circles, touch rome other Farallel, leffer than the given Parallel. For firt, let ABC pals through the Poles of the Parallels. I fay alro DBE, paffes through the fame Poles, that is, the Point B, in which the great Circles $A B C, D B E$, cut one another, is the Pole of the Paralleis ADC, FG. For if b, is not their Poie, let H be it. Then becaufe the Circle $A B C$, is fuppofed to pafs through their Poles, H will be in the Circumference ABC . (a) Through H, G,
(a) 20. 1. defcribe the great Circle HG, cutting ADC, in 1. And of this. the Arc's AI, FG, (b) will be fimilar, becaure they are intercepted between the great Circles AH, HI, defcribed through the Pole H: But the Arc AD is fuppofed fimilar to the Arc, FG. Therefore the Arc's AI, AD, are fimilar; and confequently becaufe they are Arc's of the fame Circle, they will be equal to one another, the whole to the Part: which is abfurd. Therefore no other Point but B, will be the Pole of the Parallels, if one of the Circles $\mathrm{ABC}, \mathrm{DBE}$, viz. ABC , be drawn through their Poles. Wherefore if one of the great Circles ABC, DBE, pafles through the Pole B, of the Parallels, the other will alfo pars through it.
Fig. 58. $2 d \mathrm{lly}$, Jet the two great Circles ABC, DEF, again, cut off from the Parallels $A D C, B E$, the fimilar Arc's $A D$, BE , and neither of them pars through the Poles of the Parallels, but one of them, viz. ABC, touch one of the Parallels, fuppofe BE, in B. I fay alfo the Circle DEF, touches the faid BE, in E. For if it does not touch,
(c) I4. of but cuts it; (c) defcribe through the Point E , in the this. Parallel BE, the great Circle GEH, touching the Parallel, BE, in E; then Semicircles, one of which is drawn from E, through G, and theother from B, through A, do not concur, as is manifeft from the Figure of Prop. 13. of this Book, and from what is there demonfrrated. (d) Therefore the Arc's $\mathrm{BE}_{2} \mathrm{AG}$, will be fi(d) 13. of frated. (d) Therefore the Arcs milar: this.

Book II. The Sphericks of Theodofius.

milar: But the Arc's BE, AD are likewife fimilar. Wherefore $A G, A D$, are fimilar. And accordingly beíaufe they are Arc's of the fame Circle, they will be equal, the whole, and the Part: which is abfurd. Therefore no other great Circle drawn through E, befides DEF, touches the Parallel BE, in E, if ABC touches the fame in B . Wherefore if ABC , touches $\mathrm{BE}, \mathrm{DEF}$, will alfo touch $B E$.

Lafty, let the great Circles $\mathrm{ABC}, \mathrm{DEF}$, cut off from Fig. 59. the Parallels $\mathrm{ADC}, \mathrm{GH}$, the finilar Arc's AD, GH; and let neither of them be drawn through the Poles of the Parallels or touch either of them. I fay the great Circles ABC, DEF, touch fome other Parallel leffer than ADC, GH. For becaufe the great Circle ABC, neither paffes through the Poles of the Parallels, nor touches either of them, the great Circle $A B C$ will be oblique to both the Parallels ADC, GH. For if it was at right Angles to it, (e) it would pais through their Poles, which is contrary to the Suppofition. (f) Whence ABC may touch two Circles equal and Parallel to ADC, GH. f this. 8. of Therefore let it touch the Parallel BE, which will be leffer than either ADC , or GH ; (becaufe ABC , cuts them) and f_{0} the other equal and parallel to it, will be leffer than ADC , or GH , and accordingly the Parallels $\mathrm{ADC}, \mathrm{GH}$, are pofited between thofe two, that the great Circle AC, touches. I fay alf. DEF, touches the fame BE. For if it does not touch it,(g) deferibe through (g) 15. of the Point H , which is between the Circle BE, and ano this. ther equal and parallel to it, the great Circle KH , touching BE, in I; then Semicircles, one of which pafles from I, through G, and the other from B, through G, will not concur. (b) Therefore the Arc's AK, GH, will be fimilar: But AD, GH, are fimilar: Wherefore AK , AD , are fimilar. And confequently becaufe they are Arc's of the fame Circle, they will be equal, the VVhole and the Part. Which is abfurd. Therefore no great Circle defrribed through H , befides DEF, touches the Parallel BE, if ABC, touches it in B. VVherefore if ABC , touches the Circle BE ; DEF, will alfo touch BE Q. E. D.

SCHOLITM.

It is manifeft that the great Circles $A B C, D E F$, muft fo toucb the Parallel BE, that their Sernicircles proceeding through fimilar Arc's from the Points of Contact, muft not concur. For otherwife the Arc's cut off, will not be fimilar, as appears from Prop. 13 of this Book.

THEO. XV. PROP. XVII.

If, in a Spbere, tbe Arc's of great Circles in. tercepted between parallel Circles, and a great Circle parallel to them, be equal, the Jaid parallel Circles will be equal; and tbose Parallels woll be leffer that bave the Arc's of great Circles intercepted between them, and a great Circle parallel to them, greater.

Fig, 60. 耳 ET the parallel Circles AB, CD, EF, he in a Sphere; and let $C D$ be the parallel great Circle. Now between the Circle CD, and either of the Parallels AB EF, let the equal Arc's $A C, \check{C E}$, of any great Circle $A C E F D$, be intercepted. I fay the Parallels $A B$, EF , are equal. For let the common Seations of the Paralle's, and the Circle ACEFDB, be the right Lines (a) 16. II. A , CD , EF , (a) which will be parallel between themfelves. And firft, let the great Circle ACEFBD, pafs through the Poles of the Parallels. VVhich being fup(b) 15 . I. pofed, (b) the Circle $A C E F D B$ will bifect the Parallels $A B_{3}$ of this. CD, EF, at right Angles; and fo $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}$, will (c) Io. of be Diameters of the Parallels. (c) But becaufe the this. Arc's AC, BD, are equal, as alfo the Arc's CE, DF; and $A C$, is equal to $C E ; A C, B D$, together; will be equal to $C E, D F$, together: But theSemicircles $C A B D$,
(d) Ir. I. CEFD, are equal: (d) Becaufe the great Circles $C D$, of this. ACEFDB mutually bifect each other. Therefore the remaining

Book II. The Spbericks of Theodofius.

 maining Arc's AB, EF, will be equal, (e) and according-(e) 29. 3. ly alfo the right Lines AB, EF, that is, the Diameters of the Circles $A B, E F$, are equal. Therefore the Circles $A B, E F$, are likewife equal.Again, let the Arc, AC , be greater than the Arc, CE. I fay the Circle $A B$, is greater than the Circle EF. For the fame Conftuction and Demoniftration being fuppofed, the A 'c's $A C, B D$, as at firft, (f) will be equal, (f) ro. of as alfo CE, DF. Therefore fince AC, is fuppofed, this. greater than $C E$, the two Arcs AC, BD, together, are greater than the two Arc's CE, DF, together. Wherefore the remaining $\operatorname{Arc} A B$, taken from the Semicircle CABD , will be leffer than the remaining $\operatorname{Arc} \mathrm{EF}$, taken from the Semicircle CE. And accordingly alfo the right Line $A B$ that is, the Diameter of the Circle $A B$, will be leffer than the right Line EF, that is, than the Diameter of the Circle EF, as is by us demonftrated in Schol. Prop. 29. Iib. 3. Euclid, when the Arc's AB, EF, are leffer than a Semicircle. Wherefore the Circle AB, will be leffer than the Circle EF. Which was propofed.

But now, let the great Circle ACEFDB, not pafs Fig. 6I. through the Poles of the Parallels $A B, C D, E F$; and let again the Arc's AC, CE be equal. I fay fill the Circles $A B, E F$, are equal. For let G, H, be the Poles of the Para!lels $\mathrm{AB}, \mathrm{CD}, \mathrm{EF},(g)$ and defribe through G , H , and the Poles of the great Circle ACEFDB, the great Circle GIHK, (3) which will cut the Cirde ACE FDB, in two Points, as I, K, at right Angles. Therefore becuufe the great Circle GIHK, pafies through the Poles of the great Circles ACEFDB, CD, from Confrustion, thefe (i) will reciprocally pafs through the Poles of that. Wherefore the Points C, D, wherein thefe two Circles interfect each other, will be the Poles of the Circle, GIHK; (for otherwife both the Circles $\mathrm{ACEFD}, \mathrm{CD}$, will not pafs through the Poles of the Circle : GIHK) and accordingly the right Lines $\mathrm{Cr}_{\text {, }}$ $C K$, (from the $D \approx f$ of a Pole) will be equal, and (k) fo the Ar's CI, CK, will be equal. But the Arc's AC , CE, by the Hypothefis are allo equal. Therefore the remaining Arc's AI, EK, will likewife be equal. Again, becaufe the Semicircle IGK, is equal to the Semicircle GKH; (l) (for the Circles ACEFDB, and (l) if. I. GHH_{2} of this. GIHK, murually bifect each other ; and accordingly IGK, is a Semicicle; and the Arc GKH, is a Semicircle, becaufe of the Poles G, H, of the Parallels, taking away the common Arc GK, the remaining Arc's GI, HK, will be equal. Wherefore hecaufe the equal Segments of (m) Ir. 1. Circles IGK, KHI, (m) which are Semicircles, are at of this. right Angles on the Diameter of the Circle ICKD, and the Arc's IG, KH , are equal, and not Quadrants (becaufe G, H, are not the Poles of the Circle ICKD:) And $(n)_{\text {I2. of }}$ alfo the Arc's IE, KE, are equal, as has been proved; this. n right Lines GA, HE, (n) will he equal. (0) Therefore
(o) Schol. 26. 1. of this:
(p) 6.1 . of this. the Circles AB, EF, are equal.
Lafly, If the $\mathrm{Arc} A \mathrm{C}$, begreater than CE; I fay the Circle $A B$, is greater than the Circle EF. For having taken the $\operatorname{Arc} C L$, equal to the $\operatorname{Arc} C E$, the Parallel defcribed through L, will (as juft now has been proved) be equal to the Parallel EF: (\boldsymbol{p}) But the Parallel AB, is leffer than the Parallel defcribed through L, becaufe it is further diffant from the parallel great Circle; and confequently from the Center of the Sphere. Therefore the Parallel $A B$, is alfo leffer than EF. Q E. D.

T H E O. XVI. PROP. XVIII.

The Arc's of great Circles in a Spbere, intercepted between a gieat Circle, Parallel io two equal and parallel Circles, and thoje Parallels, are equal: And thofe Arc's of a great Circle that are intercepted between greater Parallel, and a great Circle parallel to it, are leffer.

Fig. 62. L ET AB, CD, he two equal and parallel Circles in a Sphere, and EF, a great Circle parallel to them : Now let the great Circle ACD, cut all thefe parallels. I fay the Arc's AE, EC, as alro BF, FD, are equal.
(a) 17. of For if they are not, let AE, be greater. (a) Therefore the
alis. Circle AB, will be leffer than the Circle CD, which is contrary to the Hypothefis. VVhence the Arc's AE, $E C$, are equal, as alro $B F, F D$.

Now if the Circle $A B$, be greater than the Circle $C D$; I fay the Arc, $A E$, is lefter than the Arc EC. For if it be not lefter, it will be equal, or greater. If it be equal, the Circles $A B, C D$, (b) will be equal: if grea- (b) 17 of ter, the Circle $A B,(c)$ will be leffer than the Circle $C D$, this. each of which is contrary to the Hypothefis. Therefore ${ }_{\text {this }}$ (c) 17 of the Arc AE, is leffer than the Arc EC. Q. E. D.

THE. XVII. PROP. XIX.

If a great. Circle in a Sphere, not paffing through the Poles of any Number of Parallels, cuts them, it will be in unequal Paris, except the parallel great Circle, and those Segments of the Parallels intercepted in one Hemin sphere, (made by the afore Said great Circle) which are between the Parallel great Circle and the conspicuonus Pole, are greater than a Semicircle: But those which are intercepted between the Parallel great Circle, and the occult Pole, are lefter than a Semicircle: Finally, the alternate Segments of the equal and parallel Circles, are equal.

LET the great Circle $A B C D$, cut the Parallels EF, GH, IK, in L, M; B, D, and O, P, not paffing thro' their Poles, which let be Q, R, and let GH he the parallel great Circle, Q , the confpicuous Pole, and R , the occult Pole in the Hemifphere, which is above the great Circle ABCD , and declines towards F. I fay the Circle ABCD, does not bifect the Parallels, except the parallel great Circle GH ; (a) for it bifects this: And the Segment LFM, between the parallel great Circle and (a) Ir. r: the of this. the confpicuous Pole Q , is greater than a Semicircle, and OKP, leifer. It laftly, the Parallels EF, IK, are e(b) 20. I. qual, the alternate Segments LFM, OIP, are equal. (b) of this. For through the Pole Q, and the Point B, defribe the great $\mathrm{Circle} \mathrm{Q}, \mathrm{BRD}$; which will pafs through the other Pole R, (from Corol. Schol. Prop. 10. Lib. I. of this)
(c) II. I. as alfo through the Point D, (c) becaufe-itdivides both of this. the Circles GBHD, $A B C D$, in half; but thefe Circles are cut in half in B,D. Whence the Circle QBRD cuts the Parallel EF, above the Circle ABCD; but the Parallel $\mathrm{IK}_{\text {, }}$ below the fame ; as in the Points $\mathrm{S}, \mathrm{T} ; \mathrm{V}, \mathrm{X}$. (d) 15. I. (d) And becaufe the Circle QBRD, bifects the Paral-
of this. of this. lels LF, IK ; SFT, VKX, will be Semicircles; and according'y the Arc LFM, will be greater than a Semicircle, and the Arc OKP, leffer. Which was propored.

Now let the paraliel Circles EF, IK, be equal. I fay the alteriate Segnents LFM, OIP, are equal ; as alfo
(e) i20. I. of this. (f) $9.0 f$ this. great Circle AGCH, paffes through the Poles of the great (g) Schol. Circles GH, AC, (g) thefe will reciprocilly pars through 15. I. of the Poles of that.
this. Therefore the Points D, D, are the this. Poles of the Circle AGCH; and accordingly right Lines $B A, B C$, will be equal (fipu the Def. of a Pole,) (b) 28. 3. and (b) therefore the Arc's BA, BC, will be equal: But (i) 18. of the Arc's BL, BO, (i) are likewire equal; becaule the this. Parallels EF, IK, are equal. Wherefore the remaining Arc's AL, CO, are equal: But the Arc's AL, CO, are half of the Arc's LAM, OCP, becaufe, it has been proved that right Lines AL, AM', CO, CD, are equal. There(k) 29. 3 fore the Are's LAM, OCP, are cqual, (k) and accordingly the Subtenfes LM, OP, will be equal. (i) Wherefore from the equal Circles EF, IK, they cut off equal 'Atcs's, the greater one being 'LFM, equal ro OIP, and the leffer one LEM, equal to OKP. Q.E.D.

T H E O. XVIII. P R O P. XX.

If a great Circle in a Spbere, not pafing tbro the Poles of any Parallels, cuits them; thofe intercepted Arc's of tive Parallels in one Hemifphere, rebich are nigber the conspicuous Pole, are greater than thore Arc's of the fame Parallels, rebich are fimilar to the intercepted Segments furtber from the conSpicuous Pole.

IET the great Circle GHIKLMNO, in a Sphere, cut Fig. 64. the Parallels $\mathrm{AB}, \mathrm{CD}, \mathrm{EF}$, in $\mathrm{H}, \mathrm{O}, \mathrm{I}, \mathrm{N} ; \mathrm{K}, \mathrm{M}$, not paffing through the Poles; and let P be the confpicuous Pole upon the Hemifphere GBL, and Q , the occult Pole. I fay the Arc OBH, is too hig to be fimilar to the Arc NDI, and NDI, too big to be fimilar-to the Arc MFK. (a) For defcribe the two great Circles PI, IN, through the Pole P of the Parallels, and the Points I, N, cutting the Parallel AB, above thie Circle GILN, in R, $S_{\text {, }}$: (b) Ther the Arc RBS, will be fimilar to the (b) ro. of Arc IDN. Therefore becaufe the $\operatorname{Arc} \mathrm{OBH}$, is greater this . than the Arc RBS, it will be too big to le fimilar tothe Arc NDI. In the fame manner we demonftrate that the ArcNDI is too big to be fimilar to the Arc MFK, to wit, if through the Pole P, and the Points K, M, two other great Circles are defcribed. Q. E. D.

COROLLART.

From hence it is manifof that the Arc OBH, is a greater Part of its Parallel AP, than the Arc NDI, is of its Parallel g $^{\circ}$ c. Becaufe the Arc RBS, is the fame Part of its Parallel, as the Are IDN is of his, as has been proved.

18
THEO-

The Spbericks of Theodofius. Book II.

THEO. XIX. PROP. XXI.

If in equal Spheres great Circles, be inclined to great Circles, that, wbofe Pole is bigher above the lower Circle, will be more inclined: But tbofe Circles robofe Poles are equally diftant from the Plans of the lower Circles, are equally inclined.

Fig.65. 1 ET the two great Circles BND, FOH, whofe Poles 66. Lare P, Q, be inclined, in the equal Spheres ABCD , EFGH, whofe Centers are $1, \mathrm{~K}$, to the great Circles $A B C D, E F G H$; and let in the firf Place, the Pole P, be higher above the Plan of the Circle $A B C D$, than the Pole Q above the Plan of the Circle EFGH. I fay the
(a) 20. I. Circle BND, is more inclined to the Circle ABCD , than of this. FOH, to EFGH: (a) For defcribe through the Poles $\mathrm{L}, \mathrm{P} ; \mathrm{M}, \mathrm{Q}$, the great Circles $\mathrm{ANC}, \mathrm{EOG}$; and let the right Line BD, be the common Section of the Circles $\mathrm{ABCD}, \mathrm{BND}$; the right Line AC , of the Circles $\mathrm{ABCD}, \mathrm{ANC}$; and the right Line NI , of the Circles BND, ANC: All which right Lines, will pafs through (b) G. I. of I, the Center of the Sphere, (b) becaufe great Circles this. pafs through the fame Center. In the fame Order, let in the other Sphere, the common Section of the Circles EFGH, FOH, be the sight Line FH; of the Circles EFGH, EOG, the right Line EG; and of the Circles FOH, EOG, the right Line OK: All which right Lines will likewife pafs through K, the Center of the Sphere. Now becaufe the Circle ANC, paffing through the Poles
(c) 15. 1. of the Circles $\mathrm{ABCD}, \mathrm{BND}$, (c) cuts them at right Ansf this.
(d) $19 . \mathrm{II}$. gles ; fo reciprocally both the Circles $\mathrm{ABCD}, \mathrm{BND}$, will be at right Angles to the Circle ANC, (d) and confequently the right Line $B D$, their common Section, will be perpendicular to the fame Circle ANC. Wherefore the Angles AID, NID, will be right ones (from Def. $3 \cdot$ lib. II. Euclid.) And accordingly AIN, will be the Angle of Inclination of the Circle BND, to the Circle ABCD (from Def. 6. lib. In. Euclid.) in the fame

Book II. The Spbericks of Theodofius.
mianner EKO, will be the Angle of Inclination of the Circle FOH, to the Circle EFGH. But becaufe P, the Pole of the Circle BND, is higher above the Circle $A B C D$, than the Pole $Q_{\text {, }}$ of the Circle FOH, is above the Circle EFGH; the Arc CP, will be greater than GQ. For fince thefe Arc's are perpendicular to the Circles $\mathrm{ABCD}, \mathrm{EFGH}$, they will meafure the Altitudes of the Poles P, Q, above their Circles. But the Arc's PN, QO, are equal, as being Quadrants. (e) For the Poles P, Q, (e) Corol. are diftant from the great Circles BND, FOH, a Qua-16. of this drant. Therefore the $\operatorname{Arc} C N$, will be greater than the Arc GO; and accordingly the remaining Arc AN, of the Semicircle ANC, will be leffer than the remaining Arc EO, of the Semicircle EOG. $(f)^{(f)}$ Schol. VVherefore the Angle AIN, will be leffer than the An- ${ }^{7} \cdot 3 \cdot$ gle EKO; and accordingly the Circle BND , will be more inclined to the Circle $A B C D$, than the Circle FOH_{3}, is to the Circle EFCH, as we have fhewn in the Explication of Def. 7. lib. i I. Euclid.

Now let the Arc's CP, GQ, be equal, that is, let the Poles P, Q, be equally diftant from the Plans of the Circles ABCD, EFGH. I fay the Circles BND, FOH, are equally inclined to the Circles ABCD, EFGH. For becaule the Arc's CP, GQ, are equal, if there are added to them the Quadrants PN, QO, the Arc's CN, GO, will be equal; and accordingly the remaining Arc's AN, NO, taken from the Semicircles, will be equal. $(g)^{(g)}$ (g) 27.3: Therefore the Angles AIN, EKO, will be equal, and accordingly (from Def. 7. lib. 1 I. Euclid.) fimilar, or the Inclination of the Circles BND, FOH, to the Circles $A B C D, E F G H$, will be equal. Q. E. D.

SCHOLIUM.

From bence it is manifeft, if the Poles of great Circles inclined to otbers are equaly diftant from the Poles of the great Circles to which they are inclined, the Inclinations are equal. But that Circle wohofe Pole is nigber to the Pole of anotber to which it is inclined, has agreater Inclination. For if the Arc's $L P$, $M O$, are equal, GP , CQ, will likewife be equal, (b) becaufe CL, GM, (b) Corol. are Outdrants; and therefore the Poles P, Q, of thes 15. I. of inclind Circles, will be equally diftant fromz tho Plans this. Prop bas been demonftrated, the Inclinations of the Circles $B N D,{ }^{\circ} \mathrm{FOH}$, to the Circles $A B C D$, EFGH, will be equal. But if the $\operatorname{Arc} L P$, belefler than $M Q_{2}$ the romainining Arc CP, taken from the Quadrant, will be greater than the Arc C O, taken from the fame Quadrant. Whorefore, as bas been proved in this Prap. the inclination of the Circle $B N D$ to the Circle $A B C D$, will be reveater than of the Circle FOH, to the Circle EFGH.

We this demonftrate the Conuverfe of this Theoreng and Scboliunn.

If great Circles in equal Spheres, are equally inclin'd to great Circles, the Diftances of their Poles from the Plans of the lowermoft Circles will be equal: But the Pole of that Circle which is more inclined, is higher. Alfo the Diftances of the Pales of thofe Circles, that are equally inclin'd, from the Poles of the Circles to which they are inclin'd, will be equal: But the Diffance of the Pole of that Circle, which is more inclin'd, from the Pole of the Circle to which it is inclin'd, will be leffer.

For if the Circles BND, FOH, are equally inclin'd to the Circles $A B C D, E F G H$, the Angles AIN, EKO,
(i)26. 3. will be equal (from Def. 7. Lib. I1. Euclid.) (i) and accordingly the Arc's AN, EO, will be alfo equal. Therefore adding the Quadrants $\mathrm{INP,O2}$, the Arc's $A P, E Q$, will be equal; and conlequently $C P, G Q$, will be equal. But if the Circle BND, is more inclind to the Crcle $A B C D$, than the Circle $F O H$, it to the Circle EFGH, the Angle AIN, will be leffer than the Angle EKO, (as we bave faid in Def. 7. Lib. i1. Eu(k) Schol. clid.) (k) Whence the Arc AH, will be leffer than 26.3. the Arc FO. Therefore alding the Quadrants NP, O2, the Are AP, will be leffer than the Arc EQ; and accordingly $C P_{3}$ will be greater than G Q.

Book II. The Spbericks of Theodofius.

Again, If the Circles are equally inclin'd, the Arc's $C P$, Q , as before was demonitrated, will be equal. (1) Therefore becaufe CL, GM, are Quadrants; the (l) Corol. Ar's's $L P, M Q$, are equal.

If, laftly, the Circle BND, be more inclin'd, the Arc this. $P C$, as juft now was proved, will be greater than the Arc CQ. Therefore LP, will be leffer than MQ.

Two otber Theorems in the other Verfion are alfo here. alded $_{2}$ viz.

I.

Great Circles touching the fame parallel, are equally inclin'd to the parallel great Circle: But that great Circle which touches a greater Parallel, is more inclin'd to the parallel great Circle. And Circles equally inclin'd to the parallel great Circle, touch the fame Parallel : And that Circle which has a greater Inclination to the parallel great Circle, touches a greater Parallel.

Let the great Circles $A B, C B$, touch the fame Paral- Fig. 67 lel $A C$; and let DE, be the parallel great Circle. I Say the Circles $A B, C B$; are equally inclin'd to the Cir_{-}(a) 20. 1. cle DE. For let F, be the Pole of the Parallels, (a) of this. and through F, and tbs Points of Contact A, C, defcribe (b) 5 . of $t ? 6$ great Circles FAD, FCE, (b) which will pafs this. throwab the Poles of the Circles. $A B, C B$; (c) and (t) 15 . I. therefore will cut them at right Angles.

Wherefore the Arc's AF, CF, macaure the Altitude of the Pole F, of tha Circle $D E$, aboue the Circles $A B$, $C B$; (d) and accordingly fince the Arc's $A F, C F$, are (d) 28.3. equal, becaufe Subtenfes $F A, F C$, are fuch (from Def. of a Pole) the Circle DE, (e) will be equally inclin'd (e) 2r. Io to the Circles $A B, C B$, and thefe will be reciprocally of this. inclin'd to that.

Now let the great Circle GH, touch a greater Parallel GI. I fay the Inclination of the Circle GH, to the parallel great Circle, DE, is greater than the In- (f) 20. r . chination of the Circle $A B$. (f) For baving def cribed of this. through F, and the Point of Contact G, the great Circle FGE, the Arc FG, will meafure the altitude of the Pole F, of the Circle DE, above the Gircle GH. But the Arc FG, is areater than the ArG FA becaufe the Circle GI, is fuptofed greater then the Circle AC, and
(g) II. I. of this. accardingly is more remote from the Pole F. (g) Therefore the circle DE, will be niore inclined to the Circte $G H$, than to the Circle $A B$; and reciprocally $G H$, will Ue more inclined to $D E$, than $A B$.

Again, Let the great Circles $A B, C B$, be equally inclined to the Parallel great Circle DE. I fay they (is) 20. 1. touch, the fame Parallel. (b) For through F, the Pole of this. of the Parallels, and the Poles of the Circles $A B, C B$; defcribe the great Circles FAD, FCE, cutting the Cir(i) 15. I. cles $A B, C B^{\prime}$, in A, C. (i) Now becaufe they are cut of this. at right Angles; the Arc's FA, FC, meufure the altitude of tbe Pole F, of the Circle DE, above the Circles (k) Schol. $A B$, CB. (k) But the Arc's $F A, F C$, are equal, be21. of this. caufe the Circles $A B, C B$, are equally inclined to the Circle DE, and fo reciprocally the fe to thofe If therefore from the Pole F, with the diffance $F A$, or $F C$, the (i) 3 . of Circle $A C$, $2 s$ defcribed. (l) This will touch the Circles this. $A B, C E$, becaufe the Circle $A C$, and the Circles $A B$, $C B$, cut the great Circles FD, FE, paffing throug b their Poles, in the fanne Points A, C.

Laftly, let the great Circle GH; be more inclined to (m) 20. I. the Circle DE. N. ay it touches the sreater Parallel, (m) of this. for having defcribed through F, the Pole of the Parallel s, and the Pole of the Circle GH, the great Cir(x) 15. I. cle FG, (n) which will cut the Circle G \dot{H}, at right of this. Angles, viz. in the Point G; the Arc $F \mathrm{G}$ will Pill meafure the altitude of the Pole F, above the Circle $G H$, (g) schol: (o) But FG, is greater than FA, becaufe the Circle 21. of this. GH, is more inclined than $A B$. Therefore the Circle defcribed from the Pole F; with the Interval FG, will be greater than the Circle defcribed from the fame Pole (p) 3. of F, with the diftance $F A$. (p) Wherefore because $A B$, shis. $A C$, mutually touch each other in A, and $G H, G I$, al $\int_{0}:=\mathrm{E}_{2}$ the thing proposed is manifef.

Book II. The Sppericks of Theodofius.

II.

Great Circles equally inclined to a parallel great-Circle, have their Poles in the Circumference of the fame Parallel. And great Circles, which have their Poles in the Circumference of the fame Parallel, are equally inclined to the Parallel great Circle.

Let the great Circles $A B, C D$, whofe Poles are E, F, Fig.68, be equally inclined to DB, a parallel great Circle. I 69. Say their Poles E, F, are in the fame Parallel. (a) For (a) $2 n$. I. having defcribed thro' G, the Pole of the Parallels, of this. and E, F, the Poles of the Circles $A B, C D$, the great Circles GE, GF, (b) which will be at right Angles to of this. the Circles $A B, C D$; the Arr's EG, FG, will be the diftances of the Poles E, F, from the Pole G : (c) But (c) Schol. they are equal, becaufe the Circles $A B, C D$, equally ${ }^{21}$. of this. incline to the Circle DB. Therefore the Circle EF, defcribed from the Pole G, with the diftance $G E$, or $G F$, (d) 2. of (d) is Parallel to the Circle DB; in which parallel EF, this. are the Poles E, F, of the Circles $A B, C D$, which was propofed.

But now let the great Circles $A B, C D$, have their Poles E, F, in the Parallel EF. 1 fay they are equally inclined to $D B$ the Parallel great Circle. For, from the Def. of a Pole, right Lines GE, GF, are equal, (e) (e) 28.3. and confequently alfo the Arc's EG, FG. Therefore becaule the fame Arc's, ars the siffances of the Poles E, F, of the Parallels, from the Pole G , the Circles $A B$, $C D_{2}(f)$ will be equally inclined to $D B$, the Parallel (f) Schol. great Circle.

There bere follows in the Greek, the 22d Propofition, whole Dernonftration is very lony. Whence becaufe in the other Verfion the fame is florter and nore cleariy demonftrated, there are bere added thre? other Thoorems, by which the following 22d Propofition may eafier be demonftrated. But the firft Theorem is the fecond Part of Prop. I. Lib. 3. of Theodofius; tho as it is here propofed, is more univerfal. Therefore the frrft Theoren, which is the thirll in this Scholiunt, is ibis.

III.

If upon the Diameter of a Circle be conftituted at right Angles the Segment of a Circle ${ }_{3}$ and the Circumference of the infiftent Segment; be divided into two unequal Parts; and if from the Point of Section, to the Circumference of the firft Circle, feveral Lines be drawn; the right Line fubtending the leffer Part of the infiftent Segment, will be the leaft of them all: and that which fubtends the greater Part, is the greateft of them all. But of the others, that right Line which is nigher the greateft, will always be greater than that more remote: And that nigher the leaft, will always be leffer than that more remote. And two equal right Lines which fall from the fame Point to the Circumference of the Circle, are equally diftant from the greateft right Line.

Fig. 70. the Upon the Diameter $A D$, of the Circle $A B C D E$, let 71. is Sisment AFD, be erected at rop Anes, wich 72. is not bifected in F; and let the lefler Part be $A F$, and the greater DF : and let there fall from F, Ceveral right Lines, as $F A, F I, F H, F B, F C, F D, F E$. I fay $F A$, is the leaft of them all; $F D$, the greatef: But FC, is greater than FB, \&zc. and FI, leffer than FH, \&cc. Finally, the two right Lines FE, FC, are equal, if they are equally diftant from the greateft $F D$, that is, if the Arc's $D E, D C$, are equal. (a) For (a)21.11. draw from' F, to the Plan of the Circie $A B C D E$, the Perpendicular $F G,(b)$ which will fall in the common rection AD: And the Point G, will be between the Points A, D, as in the firft Figure, (which will always bappen, when the Segment AFD, is leffer than a Semicircle, and fometimes when it is greater) or be the fame as A; or will be without the Circle, in the Diameter $D A$, froduced, as in the two laft Figures. Nom, in the firta Figure, G, will not be the Center of the Circle $A B C L E$,

Book II. Tbe Splericks of Theodofius.
becaufe GF, does not bifect the Segment AFD: Much Lefs will G be the Center of the Circle $A B C D E$, in the two laft Figures. Draw the right Lines GI, GH, GB, GC, GE; then all the Angles at G , will be right ones (from Def. 3. Lib. 11. Euclid.). N(w (c) becaufe (c) 7.018 $\mathrm{G} A$ is the leaft of all the rigbt Lines drawn from G, of 3. to the Circuniference of the Circle $A B C D E$, in the firf and third Figures; and in all the Figures, GD, (d) is $(d) 7.15$. the greateft; and GC , greater than GB ; and GI , leffer or 8,3 . than $\mathrm{G} H$, and Lafly, GC, GE, equal: Whence in the firft and third Figures tise Squares of the right Lines AG, GF, together, will be leffer, than the Squares of the right Lines IG, GF together: (e) To which becaufée (e) 47. r. the Squares of the right Lines FA, FI, are equal; the Square of FA, will be leffer than tbe Square of FI. And fo FA, Leffer than F1. We prove in the fame manner that $F A$, in the firft and third Figures, lis leffer than FH , \&c. And in the jecond Figure (f) FA, is alfo(f) 47. Io leffer than FI, or FH \&c. Becaufe in the Triangles AIF, AHF, (in which the Angle A, is a right one, from Def. 3. Lib. 11 . Euclid, and jo the others acute) the right Line $F A$, fubtends the acute Angle I, or H, but the right Lines FI, FH, \&c. the right Angle A. Therefore theright Line $F A$, is the leaft of them all. Again, in all the Figures, the two Squares of GD, GF will be greater than the two Squares of $\mathrm{GC}, \mathrm{GE}:(\mathrm{g})(\mathrm{g}) 47 . \mathrm{I}$. To which becaufe the Squares of FD, FC, are equal; the Square of $F D$ will alfo be greater than the Square of FC, and accordingly the right Line FD, will begreater than $F C$. So alfo $F D$ will be greater than $F B$, \&c. Therefore the right Line $F D$, is the greateft of them all.

Moreover in all the Figures, the two Squares of $C C$, GF , will be greater than the two Squares of $G B, G F$: (b) to which becaufe the Squares of $F C, F B$, are equal; (h) 47. I, the Square of FC, will be greater than the Square of $F B$; and So the right Line $F C$, will be greater than $F B$. We prove in the fame manner, that the right Line FC, which is nigher the greateft $F D$, is greater than any 0 ther more remote, \&c. For in all the Figures, the two Squares ofthe right Lines GI, GF, are leffer than the two Squares of GH, GF: (i) to which becaufe the (i) $47 . \mathrm{x}$:
Squares of $F I$ FH, ars Squares of $\mathrm{FI}_{2} \mathrm{FH}_{2}$ are equal; the Square of FI , will allo be leffer than FH. We prove thus that the right Line FI, which is nigher the leaft FA, is leffer than any otber more remote, \&c. Lafly, the two Squares of GC, GF, (k) 47. 1. are equal to the two Squares of $\mathrm{G} E, \mathrm{GF}$: (k) to which becaufe the Squares of FC, FE, are equal, the Squares of $I C, F E$, will alfo be equal; and jo the right Lines $F C, F E$, will be equal, Therefore we have demonArated what was propojed. Again, as from the Demonftration appears. 1 fay that right Line is nigber the greateft $F D$, which falls in a Point nigher to the Point D: And that is nigher to the leaft FA, which falls in a Point nigher the Point A.

IV.

If a Point be affigned in the Superficies of a Sphere within the Periphery of any Circle, except its Pole, and from that Point to the Circumference of the Circle feveral Arc's of great Circles leffer than Semicircles are drawn; the greateft is that drawn thro' the Pole of the Circle; and the leaft that which is adjacent to it: But of the others, that which is nigher to the greateft is always greater than that more remote: And the two Arc's equally remote from the greateft or leaft, are equal between themfelves.

Fig. 73. Let ABCDE, be a Circle in a Splere, whofe Pole is F, and affume in the Superficies of the Sphere within the Periphery of the Circle, any Point as G, except the Pole F, from which let there be drawn any Number of Arc's of great Circles to the Circumference of the Circle $A B C D E$, wbereof $G A$, both ways produced, let pafs. thro the Pole F, and let the Arc GB be nigher to $G A$, than GC; and Laftly, let GB, GE, be equally diftant from $G A$, or $G D$; let alfo all thefe Arc's be leffer than Semicircles: Which they will be, when they interject (a) II. I. each other in no otber Point but G. (a) (For becaufe great

Book II. The Splbericks of Theodofius.

great Circles mutually bifect each otber, the Arc's GA, GE, will be lefler than Semicircles, as not yet interfecting one anotber. And for the famereafon, otber Arc's arawn thro' G, will be leffer than Senn:circles, if they do not mutually interfect each otber. But if one of them, as the Arc G A, be a Semicircle, all the others will pafs thro the Point A, and will alfo be Semicircles: But if GA , is greater than a Semicircle, all the others will cut it, before they come to the Circumference, and will be greater than a Semicircle from whence nothing can be gatbered.) I fay the Arc GA, is the greateft of all, and GD, the leaft: But GB , is greater than the $\operatorname{Arc} \mathrm{GC} ; \mathrm{Laflly}, \mathrm{GB}, \mathrm{GE}$, are equal. (b) For becaufe the ArC $A D$, cuts the Circle (b) 15. It $A B C$, in half, and at right Angles; the right Line of this. $A D$, will be the Diameter of the Circle $A B C$; and upon this is erected at right Angles, the Segment AGD of a Circle, which is unequally cut in G , (for becaufe from the Def. of a Pole, the right Lines FA, FD are equal,
 Arc $A D$, is bifected in F. And therefore in G it is not halved) and tbe greater Part is G A, and the leffer GD. (d) Schol. (d) Therefore $\mathrm{G} A$, is the greateft of all right Lines 21 of this. dreven from G to the Circuniference of the Circle $A B C$, and GD , the leaft: But GB , is greater than GC : And GB, GE, are equal. Therefore becaufe the Arc's whicb they fubtend are leffer than Semicircles; (e) the (e) Schol? Arc $\mathrm{G} A$, mill be the greatef; GD , the leaft: GB , grea ${ }^{-28 .} 3$. ter than GC ; and lafly, $\mathrm{G} B, \mathrm{GE}$, are equal.
(f) 28.3:
V.

If in the Superficies of a Sphere, without the Periphery of any Circle, be affumed a Point except its Pole, and from that to the Circumference of the Circle are drawn any Number of Arc's of great Circles, leffer than a Semicircle, and cutting the Circumference of the Circle; the greateft is that drawn thro' the Pole; and of the others, that which is nigher the greateft, is always greater than that more

The Spbericks of Theodofius. Book II. remote: But the leaft is that Arc of the greateft, contained between the Point without the Circle, and the Circumference of the Circle; and of others, that which is nigher the leaft, is always leffer than that more remote: And thofe two Arc's equally remote from the greateft or leaft, are equal between themfelves.
Fig.74. Let ABCDE be a Circle in a Sphere whofe Pole is F, and afjign in the Superficies of the Sphere without the Periptery of the Circle any Point G, except the other Pole of the Circle $A B C D E$: And from G let there be drawn any Number of Arc's of great Circles to the Circumference of the Circle ABCDE, cutting it; whereof GDFA, paffes thro' the Pole F; but the Arc GHB, let be nigher to GDFA, than GIC: Lafly, let GHB, GKE, be equally diftant from GDFA, or GD; and let them all be leffer than a Semicircle: Which they will. be; when tbey inter \int ect each other in no other Point but in G, as has been proved in the precedent Theorem. I fay the $\operatorname{ArcGA} A$, is the greateft of them all $; G B$, greater than GC: But the leaft is GD; and GH is leffer than G1: Finally, the Arc's $\mathrm{CB} B, \mathrm{GF}$, alfo GH, GK, are e-
(a) 15. 1. qual. (a) For becaufe the Arc $\mathrm{G} A$, bifects the Circle ef this. $A B C D E$ at right Ansles, $A D$, will be the Diameter of the Circle $A B C D E$, and upon this is erected at right Angles, the Sorment of a Circle $D G$, which is drawn from D, thro' G, till it again cuts the Circle $A B C D E$, in the Point A. Now this Segment is not bifected in G (becaufe G, is not the Pole of the Circle $A B C D E$ in which the faid Segment is bifected, as bas been proved in the precedent Theorem) and the greater. Part, is from the Point G to A, becaufe the leffer Pole is in that, (0 therwife the Arc GDA, is drawn thro both the Poles, and accordingly will be greater than a Semicicle, fince the Arc between the tro Poles is a Semicircle) but the Leffer is $D \mathrm{G}$. (b) Thsrefore $\mathrm{G} A$ is thegreateft of allthe 21. of this right Lines drawn from G to the Circumference of the Circle ALCDE: and GD , the leaft; but GB , is greater than $\mathrm{GC}, \mathrm{GB}, \mathrm{GE}$, are equal. Alfo GH is leffer than GI; and GH, GKequal. Wherefore becaule the Arc's (6) Schol. are leffer than a Semicircle, frona the Hypothefis (c) the \$8. 3.1

Book II. The Spbericks of Theodofius:

Arc $\mathrm{G} A$ will alfo be the greateft of themall, and GD , the leaff: But GB , is greater than GC ; and GH , lefler than G 1 . (d) Finally $\mathrm{GB}, \mathrm{G} E$, as alJo $\mathrm{GH}, \mathrm{G} K$, are (d) 28.3. equal. Q. E. D.
It is manifeft from the two laft Theorems, that the Arc's drawn from G , ougbt not to be greater than a Semicircle: Otherwife greater Lines will not cut off greater Arc's, and contrarewife, as is manifeft from Schol. Prop 28. Lib. 3. Euclid.

THEO. XX, PROP. XXII.

If a great Circle in a Spbere touches fome Gircle, and cuts another parallel to it, pofited between the Center of the Spbere, and that Circle wbich the great Circle toucbes, and if great Circles are defcribed toucbing the greater of the two Parallels: All thefe great Circles will be inclin'd to the firft propofed great Circle, and the mof erect of them will be that whole Contact is in that Point, in which the greater Segment of the greater Parallel is bifected; But the loweft aid mof inclin'd, is that rebofe Contact is in that Point, in which the leaf Segment is bifected: And of the others, those that are equally diftant from eitber of the Points of them, in which the Segments are bifected, are fimilarly inclin'd : but that wbicb bas a more remote Contact from that Point, in which the greater Segment is bifected, is perpetually more inclin'd to the firft mention'd great Circle, than that which bas its ContaEE nigher the fame Point. Finally, the Poles of the great Circles reill be in the Same Cir. cle, wobich alfo mill be leffer than tbat Circle, wobich the great Carcle firft propofed toucbes, and will be paralle! to it.

Fig.75. ET the great Circle ABCD, in a Sphere, whore Pole is E, touch the Circle AF, and cut another, as GHBD, parallel to AF, pofited between the Center of the Sphere and the Circle AF, fo that the Circle GBHD, may be greater than AF ; and let E, the Pole of the great Circle ABCD, be between the Circles AF, GBHD. (But becaufe the great Circle $A B C D$, does not bifect the Circle GBHD, as not paffing through its Poles, that is, through the Poles of the Parallels, the Segment BHD,
(a) Ig. of (a) will be greater than a Semicircle, and BGD, leffer.) this. (b) Draw through E, the Pole of the Circle ABCD, and (b) 20.1 I. I, the Pole of the Parallels, the great Circle GAC, (c) of this.
(c) 9. of which will bifect the Segments BGD, BHD: And let the Points M, N, be equally difant from H ; and O further from H , than N ; let alfo the great Circles GL,
(d) 14. of this. HK, MP, NK, OL, (d) touch the Parallel GBHD, in the Points $\mathrm{G}, \mathrm{H}, \mathrm{M}, \mathrm{N}, \mathrm{O}$, all of which will be inclined to the great Circle $A B C D$, becaufe they do not pafs through its Pole E; (for fince the Pole E, is fuppofed between the Parallels AF, GBHD, the Circles touching the Circle GBHD, cannot pafs through E, for otherwife they would cut it, becaufe the other Pole, through which
(c) Corol. 30. І. of shis.
(f) Corol. they (e) muft neceffarily pafs, is without the faid Parallels.) I fay the Circle HK, is the moft erect to the great Circle $A B C D$; that is, does not incline at all ; and the loweft, that is, the moft inclin'd, is GL ; but MP, NK, are fimilarly, inclined, and OL, more than NK : Laitly, the Poles of there Circles of contaft are in one and the fame Parallel, which is leffer than AF. For becaufe E is 16. 1: of this. the Polelof the Circle ABCD , EA (f) will be a Quadrant of a great Circle; affume the ArcHQ , equal to it ; then the Point Q, will be between the Points A, I, becaure the Arc HA, is greater than a Quadrant (fince EA, has been proved to be one) and HI, leffer than a Quadrant, 16. I. of (g) becaute the Arc drawn from the Pole I, through this. H, to the parallel great Circle, is a Quadrant. If there

Book II. The Sphericks of Theodofius.

 Circle QTR, be defcribed, (b) it will be parallel to this. A, F, and leffer than it. Now I fay in this Parallel are (i) 20. r. the Poles of all the Circles touching GBHD. (i) For of this. through the Pole I, and the Points of Contact, defribe (k) 5.0 of the great Circles MIS, NIT, OIV ; (k) which will al- this. (l) fo pafs through the Yoles of the touching Circles. (l) (l)28.3. And becaufe the Arc's HI, MI, NI, OI, GI, are equal, becaule from the Def. of a Pole, the right Lines fubtending them are equal, $\varepsilon \sigma^{\circ} c$. For the fame Reafon, the Arc's IQ, IS, IT, IV, IR, are equal, the whole Arc's $\mathrm{HQ}, \mathrm{M}, \mathrm{NT}, \mathrm{OV}, \mathrm{GR}$, will be equal; and therefore fince HQ, is a Quadrant, all thofe Arrc's will be Quadrants. Wherefore becaufe it has been proved, that they paif (m) Cor. through the Poles of the contingent Circles, (m) the Points $\mathrm{C}, \mathrm{S}, \mathrm{T}, \mathrm{V}, \mathrm{R}$, will be the Poles of the contingent Circles, all of which will be in the Parallel QTR, which in the laft place was propofed to be proved.Again, becaule the Arc's of the great Circles drawn from the Pole E, of the great Circle $A B C D$, to Q, S, T, V, R, the Poles of the contingent Circles, meafure the Diftances of the Pole E, from the Poles of the contingent Circles; (fince thefe two are equally diftant from EQ, becaufe the Arc's QS, QT, are equal. ($n)^{(n)}$ ro. of For the Arc's of the Parallel VR, between the great Circles HI, MI, NI, are fimilar to the Arc's MH, NH: And fo becaufe thefe Arc's are equal, thofe will likewife be equal: Which becaure they are equal to the Arc's QS, QT ; (0) fince the common Sections of the Parallel VR, and the great Circles $\mathrm{HQ}, \mathrm{MS}, \mathrm{NT}$, drawn through its Poles, are its Diameters, it is manifeft, becaufe the Arc's between thefe Diameters nigh R, are equal, (p) and alfo the Arc's QS, QT, oppofite to there are equal, that the vertical Angles infifting on the Arc's QS, QT, are equal, and EQ , is (q) the greateft of them all ; ER, the leaft; ES, ET, are equal ; and ${ }^{21.0 f ~ t h i s . ~}$ Jaftly ET, is greater than EN, becaufe all thefe are leffer than a Semicircle; for EQ, is leffer than the Quadrant EA; and therefore the remaining ones do not cut it about the Point \mathbf{Q} : therefore they will be leffer than a Semicicle.) (r) The Circle HK, is not at all(r)Schol: inclin'd to the Circle ABCD ; and GL_{2} is moft in-2 I . of this. and OL, is inclined more than NK. Q.E.D.

The fame Things being fuppofed, if the Arc's of the contingent Circles from the Points of Contact, to the Nodes, are equal; the Said great Circles will be Similarly incline.

Fig. 76. A GAIN, Let the great Circle $A B C D$, in a Sphere, whore Pole is E , touch the Circle AF , and cut the Circle GBHD, parallel to it, pofited between the Center of the Sphere, and the Circle AF, fo that GBHD, may be greater than AF ; and let E , the Pole of the great Circle ABCD, be between both the Circles AF, GBHD: Moreover let the great Circles MO, NP, touch the Circe GBHD, in the Points M, N, cutting ABCD, in the Nodes O, P; and let the Arc's MO, NP, he equal. I fay the Circles MO, NP, are fimilarly inclin'd to the
(a) 20. 1. great Circle ABCD. (a) For draw through E, the Pole of this. of the Circle ABCD , and I, the Pole of the Parallels, the great Circle GAC: Alto tho' I, and the Points
(b) 5 of of Contact, draw the great Circles IM, IN, (b) which this. will alto pals tho the Poles of the contingent Circles,
(c) $\mathbf{1 5}$. r . and (c) therefore will cut them at right Angles. Whereof this. fore because the equal Segments of Circles, viz. the Semicircles which tend from \mathbf{M}, and \mathbf{N}, tho \mathbf{I}, until they again cut the contingent Circles MO, NP, infift on the Diameters of the Circles MO, NP, (for the common Section of the great Circles IM, MO, will
(d) II. I.
of this. be a Diameter of each Circle, (d) becaufe they mutually bifect each other at right Angles, and are not divided in half in \mathbf{I}, becaufe I , the Pole of the Parallels, is not the Pole of the contingent Circles; and the Arc's
(e) I2. of MO, NP, are equal :) (e) the right Lines IO, IP, will this. be equal. If therefore from the Pole I, be defribed the Parallel OK, with the Diftance IO, it will alfo pars tho' P. And because the great Circle IM_{2} gaffing tho ${ }^{\circ}$

Book II. The Sphericks of Theodofius.
thro' the Poles of the Circles MO, OQ, cutting one amother in $\mathrm{O}, \mathrm{Q},(f)$ bifects their Segments, the Arc's (f) 9.0 of MO, MQ; SO, SQ , will be equal ; and for the fame this. reaion will $N P, N R$, and $T P, T R$, be alfo equal ; as likewife KO, KP, and CO, CP; becaufe the great Circle IKC paffing thro' the Poles of the Circles OKP, OCP, (g) bifects their Segments in K,C. Therefore fince the $(g) 9$. of Arc's MO, NP, are equal, the Wholes OMQ , PNR , whereof they are the Halves, are equal; (b) wherefore the (b) 29.3. right Lines $O Q, P R$, wlll be equal. (i) Wherefore alfo (i) 28.3. the Arc's OSQ, PTR, will be equal; and accordingly their Halves OS, PT, will be equal. But the Wholes KO , KP, have been proved equal. Therefore the Remainders KS, KT, will be equal; and fo fince they belong to one and the fame Circle, they will be fimilar between themfelves. (k) But hecaufe the Arc's HM, HN , are fimi- (k) ro. of lar to the Arc's KS, KT, the Arc's HM, HN, will alfo this. be equal. (l) Therefore fince the Segment BHD, is bi- (l) 9. of rected in H , and the Arc's HM, HN, are equal; (m) this. the Circles MO, NP, will be fimilarly inclined to the $(m) 22$. of Circle ABCD. Q. E. D.

End of the fecond BOOK.

THE

Spherical Elements

OF

THEODOSIUS.

BO OK III.

THE. I. PROP. I.

If a right Line cuts a Circle into unequal Parts, upon webich is erected at right Angles, the Segment of a Circle, which is not greater than a Semicircle; and if the Circumference of the infiffent Segment be divided into two unequal Parts: The right, Line Subtending the lefter of them, is the leaft of all the right Lines drawn from the Point of Secdion to the greater Part of the Circumference of the proposed Circle: And of the other right Lines, drawn from the aforeSaid Point to the Circumference intercepted be-

Book III. The Spbericks of Theodofius.

betreeen the leaft right Line, and the Diameier, on which the Perpendicular drawn from the Point falls, that nigber the leaft, is always leffer tban that more remote. But the greateft of them all, is that drawn from the aforenam'd Point to the Extremity of the fame Diameter: Alfo the right Line fubtending the greater Arc of the Segment, is the leaft of thofe, that fall on the Circumference intercepted between it, and the Diameter, and alway that Line nigher this, is leffer than that more remote. And if the right Line cutting the firft named Circle be its Diameter, and all tbings elfe, as above; the right Line fubtending the leffer Arc of the Segment, is the leagt of all the right Lines drawn from the Point of Section to the Circumference of the Circle; but that, wobich fubtends the greater Arc of the infiftent Segment, is the greateft.

IET the right Line AB, cut the Circle ACBD, whofe Fig. 77\% Center isE, into unequal Parts, whereof let $A C B$, be the greater: And let the Segment AFB, of a Circle, not greater than a Semicircle, infift at right Angles on $A B$; the Arc of this Segment let be unequally divided in F; and let BF, be the leffer Part: (a) draw from F, to the (a) ir.ina Plan of the Circle ACBD, the Perpendicular EL, (b) (b) $38 . \mathrm{IE}$ which will fall in the lcommon Section; and thro E, L, draw the Diameter CD; then from F, to the Circumference ACB , of the greater Segment of the Circle ACDB_{3} let there fall the right Lines FB, FG, FH, FC, FA, FI, FK. I fay FB is the leaft of them all, and FG, leffer than FH ; but the greateft of them all is FC. Alfo FA, is the greateft of all thofe falling from F, on the Por-
tion AC ; and FI, lefier than FK. For let there be drawn from L, the right Lines LG, LH, LI, LK; then all the Angles at L, made by the Line FL, (from Def.
(c) 7. 3. 3. Lib. I 1. Euclid.) will be right ones. (c) Therefore becaufe the right Line $L D$, is the leaft of all the right Lines drawn from L , and LB , leffer than $\mathrm{LG}, \mathrm{LH}, \mathrm{LC}$, $\mathrm{LK}, \mathrm{LI}, \mathrm{LA}$, the Squares of FL, LB, together, will be
(d) 47. I- leffer than the Squates of FL, LG: (d) But theSquare of FB , is equal to the Squares of FL, LB; and the Square of FG, equal to the Squares of FL, LG. Therefore the Square of $F B$, is alfo leffer than the Square of $F G$, and confequently the right Line FB , will be leffer than FG . In the fame manmer we demonftrate, that the right Line FB , is leffer than $\mathrm{FH}, \mathrm{FC}, \mathrm{FK}, \mathrm{FI}, \mathrm{FA}$. Wherefore FB is the leaft of them all.
(e) 7. 3. Again, (e) becaure LG , is leffer than LH , the Squares () 47. I. of FL, LG, are leffer than the Squares of FL, LH : (f) But the Square of FG , is equal to the Squares of FL, LG, and the Square of FH , equal to the Squares of FL, LH. Therefore the Square of FG, will be leffer than the Square of FH ; and confequently FG , will be leffer than FH .

Further, (g) becaufe LC, is the greateft of all the Lines drawn from L; the Squares of FL, LC, are grea(b) 47 , I. ter than the Squares of FL, LK. (b) But the Square of FC, is equal to the Squares of FL, LC, and the Square of FK, to the Squares of FL, LK. Therefore the Square of FC, will be greater than the Square of FK; and accordingly the right Line FC, will alfo be greater than the right Line FK. In the fame mamer we prove, that the right Line FC, is greater than FI, and FA. Therefore the right Line \mathcal{C}, is the greatcf.
i) (i) Beraufe LA, is leffer than LI, LK, LC; the Squares of FL, LA, will he alfo leffer than the Squares
(k) 47. I. of FL, LI. (k) But the Square of FA, is equal to the Squares of FL, LA, and the Square of FI, to the Squares of FL, LI. Therefore the Square of FA, will be leffer than the Square of FI ; and fo the right Line FA, will alfo be leffer than FI. In the fame manner, the right Line FA, may be proved to be leffer than FK, FC. Therefore EA is the leaft of all the right Lines drawn from F, to the $\operatorname{Arc} A C$.

Book III. Tbe Spbericks of Theodofus.

Lafliy, (l) becaufe LI, is leffer than LK; the Squares (l) 7. 3. of FL, LI, will be leffer than the Squares of FL, LK; but the Square of FI, is equal to the Squares of FL, LI, and the Square of FK , equal to the Squares of FL, LK. Therefore the Square of FI, will he leffer than the Square of FK , and fo_{0} the right Line FI , will be leffer than the right Line FK.

If the right Line $A B$, bifects the Circle $A B C D$, fo that it may be its Diameter, we have already demonftrated in Theorem 3d. of Schol. Prop. 2I. of the precedent Book, that the right Line FB, is the leaf, and FA, the greateft. Wherefore it is not neceffary to prove the fame thing here.

T HEO. II. P R O P. II.

If a right Line cuits off the Segment of a Circle, which is not lefjer than a Semicircle, and upon that rigbt Line there infifts another Segment of a Circle, which is not greater than a Semicircle, and inclined to the former Segment; and if the Circumference of the infiftent Segment be divided into unequal Parts; a right Line fubtending the leffer Part of the Circumference, is the least of all the right Lines drawn from the Point of Divifion, to that Arc of the firft propofed Circle, which is not leffer than a Semicircle: And all the ot bers follow, as in the precedent Propofition.

LET the right Line $A B$, cut off from the Circle $A C B D$, whofe Center is E, the Segment $A C B$, not leffer than a Semicircle, but equa', as in the firft Figure, or greater, as in the others; and upon the right Line $A B$, let there be confituted another Segment of a Circle

Circle AFB, not greater than a Semicircle, but either equal, as in the laft three Figures, or leffer, as in the firft two Figures, and inclin'd to the other Segment ADB, which is not greater than a Semicircle, becaufe ACB , is fuppofed equal, or greater than a Semicircle. Alfo divide the Circumference $A F B$, in unequal parts in F, and let FB be the leffer part. Now from F, let fall the Perpendicular FL, to the Plan of the Circle $A C B D$, which will fall either in the Segment ADB , or without it, or elfe in the Circumference ADB. Again, through the Center E, and the Point L, draw $C D$, and from F, let the right Lines $E B, F G$, $\sigma^{\circ} \mathrm{c}$: fall to the Circumference ACB. I fay $+B$, is the leaft of them all; and FG, leffer than FH: The greateft of them all is FC: Alfo FA, is the leaft of all thofe Lines, drawn from F , to the Circumference AC ; and FI , leffer than FK. For draw from L, the right Lines LB, LG, LH, LA, LI, LK, and all the Angles at L, which the Perpendicular HL, makes, will be right ones (from Def. 3. lib. ir. Euclid.) (a) Therefore becaure the right Line LD, is the leaft of them all (which will be nothing in that Figure where the Points L, D, coincide) and LB, leffer than LG, LH, LC, LK, LI, LA, and LC, is the greateft of them all, Eg'c. We demonftrate, as in Theo. precedent, that the right Line FB, is the leaft, and $F G$, lefier than $F H$: $A 1 f_{0} F C$ is the greateft, and FA, the leaft of all the right Lines falling from F , on the Circumference AC ; and FI , is leffer than FK. Q. E. D.

SCHOLIUM.

Fig. 81. These two Figures are added, that all the Cafes of 82. the Cadence of the Perpendicular may be feen. For in Fig. 78. the infifent Serment AFR, is a Semicircle, and FL, falls witbin the Serment ADB: But in Figure 82, FL, falls on the Circumference $A D B$, the infifient Segment AFB, being a Semicircle; like as in Fig: 80. the fame infiftent Segment $A F B$, being a Senicircle, the Perpendicular FL, falls without the Segment. $A D B$.

THEO. III. PROP. III.

If two great Circles in a Spbere mutually cut

 one another, and if in each of them equal Arc's are afiumed on each Side the Point in wobich they cut one anotber; Rigbt Lines conneefing the extreme Points of thefe affumed Arc's, on the Same Side, are equal between tbemfelves.L^{E}E T the two great Circles, in a Sphere, $\mathrm{ABC}, \mathrm{DBE}$, Fig. 83. mutually cut each other in B , and in each of them on both fides B , affume two equal Arc's as BA, BC, and $B D, B E$, and draw the right Lines $A D, C E$. I fay the right Lines AD, CE, are equal. For from the Pole B, and with the Diftance BA, defcribe a Circle, which will alfo pafs through C, becaufe of the equality of the Arc's BA, BC. Therefore the fame Circle either paffes likewife thro' D, and confequently through E, or not: Firft, let it pafs through D, E, as in the firf Figure, and let the right Lines AC, DE, be the common Sertions of the great Circles, and of the Circle ADCE. And becaufe the great Circles ABC, DBE, paffing thro B, the Pole of the Circle ADCE, (a) bifect it, AC, (a) r5. r. DE, will be Diameters of the Circle ADCE, and F; the of this. Center ; and arcurdingly the right Lines FA; FD, are equal to FC, FE. (b) And becaure the vertical Angles (b) i5. at F, are alfo equal; (c) the right Lines $A D, C E$, will be (c) $4 . I$ equal.
Now let the Circle defcribed from the Pole B, with the Diftance BA, not pafs through D , but beyond it, and fo excurs beyond the Point E. But if the Circle AGCH, thould pals on this Side the Point D , (which would happen, if the Are BD, was greater than BA) the Circle muft be defcribed from D, with a greater Diftance than the Arc $B D$, that it may excur beyond the Point A. Produce the Arc's BD, BE, to G, H. (d) (d) 29.3. Therefore becaufe the Arc's BG, BH, are equal, fince from from the Def. of a Pole, Subtenfes BG, BH, are equal: And BD, BE, from the Hypothefis, are equal ; the remaining Arc's DG, EH, will be equal. And becaufe right Lines AG, CH, are equal, as has been proved in (e) 28. 3. the firt Part of this Prop. (e) the Arc's AG, GH, will be equal. Therefore becaufe the great Circle ${ }^{\mathrm{J}} \mathrm{BH}$,
(f) 15. I. drawn through the Pole $\mathrm{B},(f)$ bifects the Circle of this. AGCH, at right Angles, the Segment GH, infifts at right Angles, on the Diameter of the Circle AGCH. Wherefore fince the Arc's DG, EH, are equal, and lef. fer than half the Arc GDH; and the Arc's GA, HC,
(g) 12.2. have been proved to be equal, (g) the right Lines DA, of this. EC, will be equal. Q. E. D.

THEO. IV. PROP. IV.

If two great Circles in a Spbere mutually cut each otber, and in eitber of them are affumed equal Arc's on eacb Side the Point in which they intersect ; and if tbrough the Pointsterminating the equal Arc's, there are drawn two parallel Plans, one of which meets the common Section of the Circles, produced witbout the Spbere towards tht afore a aid Poini; and if one of thofe equal Arc's be greater than either of the Arc's intercepted between the aforefaid Point in the affumed great Circles and tbe parallel Plans: The Arc, wbich is between that Point, and the parallel Plan not meetting the common Section of the great Circles, is greater than that Arc of the Same Circle, which is between the Same Point, and the parallel Plan meeting the common Section of the great Circles.

Book IiI. The Spleericks of Theodofus: LET ABC, BDE, be two great Circles in a Sphere, Fig. 85 . mutually cutting one another in B , affime the e qual Arc's BA, BC, and through A, C, let there he drawn parallel Plans, (a) makking the Circumferences (a) I. r. of Circles AFG, ChiI, in the Supe, fifies of the Sphere, of this. cutting the Circumference DBE, in the Points F,H; and let the Arc BA , or BC , be geeter than either of the Arc's BF, BH, intercepted between the Pcint B , and the two parallel Plans. Again, from the Pole B, and with the difance BA , or BC , defribe the Circle ADCE , which will pars beyond the Points F, H, hecaure the Arc's BF, BH, are fuppofed lefler than the Ar's BA, BC. Moreover produce the Arc's BH, BF, to the Points D, E, towards the Circumference of the Circle ADCE; and let the common Settions of the Circle ADCE, and the Cirides AFG, CHI , be the right Lines AG, CI; and the common Setions of the great Circles, and the Circle ADCE, let be the right Lines AC, DE; which will be Diameters of it , and fo the Center will be K , (b) (b) 55. r. becaure great Circles pafing thro the Pole B, bifeet ADCE: Likewife let the right Line DE , cut the right Lines AG, CI, in M,N. Alfo let the common Setion of the great Circles, be the right Line KB , which produced on the Side of B, let meet the Plan AFG, produced without the Sphere, in the Point L. This being fuppofed, the other Plan CHI, will not meet the right Line KB , on the Side of B , becaufe it does not meet the Plan AFG, parallel to it. If fay the ATc BH, is greater than the Arc EF. For let the right Lines FM, HN, be the common Sertions of the Circle DBE, and the Circles AFG, CHI, then becaure the Plan AFG, prodnce meets the right Line KB, produced in L , the Point L, will be in each of the Plans DBE, AFG; and confequently in their common Section, viz, in the right Line MF. Therefore MF, produced, will meet with K ?, produced in 1 . But becuule the Plan DBE, cuts the paralle1 Plans AFG, CHI, (c) the Seftion:s ME, NH, will be (r) f 6 . rr. parallel. Again, becaufe the Plan ADCE, curs the parallel Plans, the Sections AG, Cl, (d) will be Parallel. (d) r6. rr. (e) Therefore the alternatc Angles $\mathrm{KAM}, \mathrm{KCN},(f)(e)$ 29. r. are equal. But the vertical Angles $A K M, C K N$, are (f) 15 . f . likewife equal, and the Sides KA, KC, becaure they are Semidiameters of the Circle ADCE. (g) Therefore will the Sides KM, KN, be alfo equal: But the Semidiameters KD, KF, are equal. Therefore the remaining right Lines DM, EN, will be alfo equal. Again, becaufe the right line BK, drawn from the Pole B of the Ci -
(b) Schol.
8. I. of this.
(i) $17 . \mathrm{I}$.
(k) 29. I. cle $A D C E$, to K the Center of the fame, (b) is at right Angles to the Plan of the Circle, the Angle MKL, in the Triangle KLM, will be a right one, from Def. 3 . lib. II. Eucid. (i) Therefore the Angle KML, will te an acute one. (k) Wherefore becaufe the two Angles FMN, HNM, are equal to two right ones; the Angle HNM, will be obtufe. Therefore, as we thall prove in the following Lemma, the $\operatorname{Arc} E H$, will be leffer than the Aic DF; and fo (l) becaufe the Arc's BD, BF, are equal, fince their Subtenfes BD, BE, from the Def. of a Pole, are fuch, the Arc BH , will be greater than the Arc BF. Q. E. D.

LEMMA.

That the Arc EH, is leffer than ibe Arc DF, we ecfily prove, tbis propofed Theorm being firf demonftrated.

If, too any right Line fubtending an Arc of a Circle, two Perpendiculars are drawn from the Arc, cutting off from the Ends of the Arc two equal Arc's, the fame two right Lines will cut off from the aforefaid Subtenfe to equal right Lines. And if two Perpendiculars are drawn to the Subtenfe of an Arc from the faid Arc, cutting off equal right Lines, the faid Perpendiculars will cut off two equal Arc's.

Fig. 86. Let the right Line $A D$ fubtend the $A r C A B C D$, of a Circle, to which from the Arc are let fall the Perpendiculars $B E, C F$, cuttine. off the two equal Arc's $A B$, $D C$. I ay they cut off equal right Lines $A E, D F$. Eor (m) schol.baving drawn the right Line BC, (m) AD, $E C$, will 27. 3. be Parallel, becaufe of the Equality of the Arc's AB, (n) 28.3.DC: (n) alfo $B E_{2} C F$ are parallel. Therefore $E E F G_{2}$

Book III. The Spbericks of Theodofius.
is a Parallelogram, (o) and fo the right Lines BE, CF, (o) 34. I. are equal. (p) And becaul'e the right Lines $A B, D C,(p)$ 29. 3. Subtending equal Arc's $A B, D C$, are equal; the Squares of $A B, D C$, will be equal. (q) Wherefore finc: the (q) 47. Io firfi is equal to the Squares of $A E, B E$, and the lotion to the Squares of $D F, C F$; if there are taken away, the equal Squares of the right Lines $B E, C F$, the Squares of the right Lines $A E, D F$, will be equal: an? consequently the Lines themselves will be equal. Which was the firft thing proposed to be demonftrated.

But now. Let the Perpendiculars BE, CF, cut off the equal right Lines $A E, D E$. I fay they cut off equal Arc's $A B, D C$. For if they be not equal, let if pofjible the $\operatorname{Arc} A B$, bs greater than $C D$, from which cut off $A G$ equal to $D C$, and from G, to $A D$, dram the Perpendicular GH: Therefore (as has been proved jufe now) the right Line $A H$, will be equal to DF; and conSequently to the Line $A E: T$ be part to the whole. Which is absurd. Wherefore the ArC $A B$, is not greatter than DC: And for the fame reason it will neither be lefter. Therefore it is equal. Which was proposed. From hence it is manifeft that the Arc HE, in the Figure of the Propofition, is lefler than the Arc DF. Fir since the Angle FMK, is acute, and $H M K$, obtule, if from M, N, Perpendiculars are drawn to $D E$, they will fall on the Arc's $D F, B H$, and will cut off equal Arc's, as we have demonftrated. Wherefore the Arc $H E$, is lifer ton the Arc DF.

THEO.V. YR OP. V.

If the Pole of parallel Circles in a Sphere be in the Circumference of any great Circle, and two other great Circles cut. this great. Circle at right Angles, one of which is one of the Parallels, and the other is oblique to tine Parallels; and of in this oblique Circle equal Arc's are fucceffively taken on the N_{2} fane fame Side of the parallel great circle, and throb' those Points terminating the equal Arc's are deforibed parallel circles: I be Ali's of the firft proposed great Circle intercepted between the Parallels will be aneequal, and that which is nigher the paralbel great Circle, will always be greater than that more remote.

Fig. 87. ET A, the Pole of parallel Circles in a Sphere, be in the Circumference of the great Circle $A B C D$, and let the two great Circles $B D, E C$, cut it at right Angles, whereof ED, is the greatcft of the Parallels, and EC, oblique to the Parallels: And tho the Points $\mathrm{F}, \mathrm{G}, \mathrm{H}$, which cut off from the oblique Circle the equad Arcs G, GH, defrribe from the Pole A, the Parallels IK, LM, NO. I fay the the Arc IL, is greater (a) 20. I. than the Arc LN. (a) For thro the Pole A, and the of this. Point G, defcribe the great Circle $A P$, cutting the parallels in P, Q. Therefore because there is taken on the Superficies of the Sphere, within the Periphery of the Circle IK, the Point G, befides the Pole A, and from G two Are's GF, GF, of great Circles fall in the Circumference of the Circle IK; (b) the Arc GP, will
(b) Schol. be the leaft of them all, and therefore leffer than GF: 2I. 2. of Becaufe the Arc's GP, GF, are lefter than a Semicircle, IIT. Forfince $G P$, is a part of a Quadrant tending from A, tho' G, to the Parallel great Circle BD, it cannot cut the Arc GF, beyond the Circle IK, unless GP be either a Semicircle, or greater, and then it will cut GF, in F, or on this Side F. Again, hecaufe the Point G is taken in the Sup fiches of the Sphere without the Periphery of the Circle, and is not in the Circles Pole; (c) the Arc $G Q$, will be the leaf of all tho following from G, that is, lefter than GH: Becaufe the Arc's GQ, GH, are lefer than a Semicircle, fine they do not interject each othen before they meet the Parallel NO, which is demonGrated, as before of the Arc's GP, GF. Therefore each

Book III. The Spbericks of Theodofius.
Are FG, GH, is greater than GP, or GQ. And because a right Line drawn tho' G, and the Center of the Sphere, that is, the common Section of the great Circles \hat{A}, EC, cuts the Plan of the parallel IK, within the Sphere; (for this right Line will not come to the Center of the Sphere, that is, to the Center of the great Circle $A B D$, without firft cutting the Plan of the Circle IK; fince the Parallel IK, is pofited between the Parallel great Circle and the Point G.) The faid right Line will cut the Plan of the parallel NO, without the Sphere, if they be produced on the Side of G : Since the Point G is profited between the greater of the parallels and the parallel NO. Therefore becaufe the two great Circles AP, EC, mutually interfect in G , and in the Circle EC, on both Sides the Point G, two equal Arc's GF, GH, are affumed, and thro' F, H, parallel Plans of Circles are drawn, as IK, NO, whereof NO, meets the common Section of the great Circles, AP, EC, without the Sphere, as has been proved, and each of the Arc's GF, GH, is (d) 4. of greater than GP, or GQ: (d) the Arc GP, will be this. greater than the Arc GQ: (e) but the Arc GP, is equal (e) 10.2, to the Arc IL, and the Arc GQ, to the Arc L.N. There of this fore the Arc IL, will be greater than the Arc LN. Q. E. D.

THEO.VI. PROP.VI.

If the Pole of parallel Circles in a Sphere, be in the Circumference of Some great Circle, and two other great Circles cut this great Circle at right Angles, one of which is one of the Parallels, and the other oblique to it; and if there are af fumed equal Arc's fucceffively on the fame Side of the Parallel great Circle, and through the Points terminating the equal Arc's, and the aforesaid Pole, great Circles are defcribed: The fe will in- Circle, whereaf that zebich is nigber the great Circle firft proposed, will always be greater than that more remote.

Fig. 88. ET A the Pole of parallel Circles in a Sphere, be in the Circum erence of the great Circle $A B C D$, and let the two great Circles BD, EC, cut it at right Angles, whereof BD, is the parallel great Circle, and EC, oblique to the Parallels; in which affume the equal Arc's
(a) 20. I. of this. FG, GH ; and through the Points F, G, H, (a) and the Pole A, let there be defcribed the great Circles AI, AK, AL , cutting BD , in $\mathrm{I}, \mathrm{K}, \mathrm{L}$. I fay the Arc KL , is greater than the Arc-IK. For defcribe thro' the Points F, G, H, the Parallels MN, OP, QR, cutting AK,
(b) 5 of F
this. $\mathrm{V}, \mathrm{G}, \mathrm{X}$. (b) Therefore the Arc MO, is greater
(c) in z. than the Arc OQ; and confequently, (c) becaufe the
of this. Are VG, is equal to the Arc MO, and the Arc GX, equal to OQ ; the Are VG, will be greater than GX. Affume the Arc GY, equal to GX, and through Y, defcribe the Parallel ST, cutting the Circle AI, in Z. Therefore becaufe the Arc's GY, GX, are equal, as alfo GF, GH, (d) 3 . of (l) right Lines HX, YF, will be equal. And becaufe shis. the great Circle AI, paffing through the Pole A, (e) bi(e) ro. 2. feat the Circle ST, at right Angles, the common Sectiof this. on, viz. the Line drawn from Z to the other Section, will be a Dirmeter of the Circle ST, upon which infifts at right Angles to the Circle AI, a Semicircle, to wit, the Semicircle teginning from the Point Z, and yoing through S to the ether Section (that is, the Segment of a Circle, not greater than a Semicircle:) and that right Line cuts off from the Circle AI, a Segment greater thin a Semicircle, $v^{i} z$. which is drawn from the Point Z, through I, to the other Seation with the Circle ST, and YZ, an Arc of the infiftent Semicirle, is lef-

(f) 10.2.

 fer than a Quadrant, (becaufe the Arc IK, (f) which of this., is fimilar to it, is alfo leffer than a Quadrant; which thus may be demonfrated. Since the great Circles BD, $E C$, are right to the great Circle $A B C D$, this likewife mill be right to thore, and confequently: will pars (g) Ir. I. of thro' their Poles. Wherefore it (g) will bifeft their Segthis.ments, (b) which are Semicircles, that is, it will divide (í) 9.2. them into Quadrants. Therefore the Arc of the Circle of this. BD, pofited hetween B, and that Point wherein the Circles BD, EC, cut one anothcr, is a Quadrant, and fo IK, is leffer than a Quadrant. For the Circle AK, falls between the Points B, I, fince it paffes through the other Pole of the Circle ABCD.) And fo the remaining Arc of the infiftent Semicircle intercepted between Y, and the other Section with the Circle AI, is greater than a Quadrant; a right Line YZ , (i) is the (i) r. of leaft of all the right Lines falling from Y , on the Cir- this. cumference ZI ; and f_{0} is leffer than YF , that is, than XF , which we have proved to be equal to the right Line YF. Wherefore becaufe the Circle QR, is leffer than the Circle ST, a greater right Line HX, cuts off a greater Arc from its Circle, than a leffer right Line YZ, from his, as we fhall by and by demonftrate. Therefore the Arc HX, is too big to be Similar to the Arc YZ. (k) But the Arc KL, is fimilar to the Arc HX, and $\mathrm{IK}(k)$ ro. 2. to YZ . And therefore KL is too big to be fimilar to IK ; of this. and accordingly fince they are in the fame Circle, the Arc KL, will be greater than the Arc IK. Q. E. D.

LEMMA.

That the right Line $H X$, cuts off a greater Arc from its Circle than the right Lins rZ, from bis, willbe manif: f, the following Theorem being firt de:mon/trated.

Equal right Lines cut off, from unequal Circles, unequal Arc's; and the Arc of the leffer Circle is too big to be fimilar to the Arc of the greater Circle.

Let $A B, C D$, be unequal Circles defcribed about the Fig. 89. fame Center E, and let there be drawn from E, two riybt Lines, as $E A, E B$, cutting the Circle $C D$ in the Points C, D, the $A r C$'s $A B, C D$, (a) will be finilar, fince (a) Schol. thefame Angle E at the Center infifts on them. And be- 33. 6. caufe the right Lines $E A, E B$, are proportionably cut in the Points C, D, becaufe $E A, E B$, are equal, as be alfo $E C$, (b) 2. 6. $E D$; (b) the right Lines $A B_{2} C D$, will be parallel. (c) And (c) Corol. So the Triangles EAB, ECD, are fimilar, baving the Angles $E A \grave{D}, E C D$, equal, as aljo $E B A, E D C$, and (d) 4. 6. the Angle E common. (d) Wiserefore as $E A$ is to $A B$; (e) 14.5 . So is $E C$, to $C D$: but $E A$ is grsater than $E C$. (e) (f) I. 4. Therefore AB, will be greater than CD. (f) Where(g) Schol fore apply BF, in the Circle $A B$, equal to CD; (g) 28.3. then tise harc $A B$, will be greater than the Arc: $F B$. Wherefone fince the Arc CD, is fimilar to the $A r c A B$, the Arc CD will be too big to be fimilar to FB. Q. E. D.

From bence it is manzfeft, that much more a greater Line cuts off from a leffer Circle, an Arc too big to b: fimilar to that, which a leffer Line cuts off from a greater Circle. For becaufe the right Line CD, equal to $F B$, cuts aff the Arc CD, too bige to be fimilar to the ArC FB; much more a greater Linz than CD, will cut off an Arc too big to be fimilar to the Arc FB; fince (b) that cuts off a greater Arc, than CD. Where-
(b) Schol. fore in this Sth Propofition, the right Line HX, being 28.3.4 greater than 12, cuts off from ibe leffer Circle $Q R$, ibe Arc $H X$, too big to bs finmilar to to the $\operatorname{Arc} \mathrm{Y} Z$, which tbe right Line $1 Z$ cuts off from the greater Circle ST.

But this Demonftration is only to be underfood of Arc's leffer than a Semicircle: as are BF,CD. For otherwife the Angle in the Center E, will not be common; which notwitifanding is required in the Demonpration. But yet, if a leffer Arc of a leffer Circle be too big to be fimilar to a leffer Arc of a greater Circle, much wore too bire will a greater Arc of a leffer Cizcte be, to be finilar to a leffer Ara of a greater Circle. And if it !lould bappien that the right Line CD, cuts off is Serniciricle from the leffer (ircie, that is, is its Duamster, it is manifeft that the Semncircle of the liffer Circie is too big to be fimilar to a leffer arc of the greater Circle; neither then will therobe any nead of a Demonftration.
Fig. 89. This Icmina being demonfrated, wo likerwife eafily prove, that equal right Lines cut off from unecual Circles, unsqual Arc's, that is, Arc': of urasqual lengtbs, So that the Arc of the leffer Gircle is longer than the Arc of the greater Circle, and alfo too big to be finilar to it. For let the rigbt Lines CD, BF, be equal, and $C D$ cut off an Arc of a leffer Circle $C E D$, and $F B$, an. Arc of a greater Circle, as FGB. I Jay the Arc CED
$C E D$, is larger than the Arc FGB. For the right Line $C D$, agreeing to $F B$, the Arc CED, neseffarily fall without the ArC FGB; and So the Arc CED, will be longer than the Arc $F G B$, fince that contains this quite witbin itfelf, and they are both Arc's concave on the faine Side, and bave the fame exreme Points, as in the Suppofitions befor Lib. I. de Sphera \& Cylindro Archimedis. Neitber will the Arc CED, coincide with the Arc $F G B$, or fall within it. For if it is faid to soincide with it, the whole Circumference of the Circle CED, will alfo coincide with the whole Circumference of tbe Circle $F G B$, and fo the Circles will be equal. Which is abfurd, fince they are fuppofed etnequal; and if the $A r c$ $C E D$, is faid to fall within the Arc FGB, as the Arc CAD. Becaufe, as bas been juft now proved, the Arc CED, that is, CAD, is too big to be fimilar to the Arc $F G B$, affume the $\operatorname{Arc} H F B$, finillar to ths $\operatorname{Arc} C A D$, and confequently greater tham the ArG FGB: And having taken the Point A, any where in ths Arc CAD, draw the right Lines $A F, A B$, and produce $F A$, till it cuts the $\operatorname{Arc} F G B$, in B: Draw the right Linis $G H$, GB . Therefore becaufe the Arc's CAD, $H F B$, are fimilar, the Angles $C A D, H G B$, beiny in thofe Segments are equal. (i) But becaufe the Angle CAD, is greater (i) 16 . I: than the Angle CGB, the external'tban the internal; and the Angle $C G B$, aifo greater than the Angle $H B G$, the Whole thans the Part; the Angl. CAD, will be much greater, than the Angle HGB. Which is abfurd. For it has:bsen proved equal to it. Therefore the Arc CED, does not fall withjin the Arc $F G B$: It neither coinciles with it, as bas been demoniflrated. Wherefore it falls without $F G B$, and fo the Arc CED, will be longer than the Arc $F G B$, as was Said.

From benc: it is alfo extremely manifeft, that imuch more a greater Linecuts off from a Ieffer Circle an Arc longer thanthat, which a leffer Line cuts off from a gredter Circle.

THEO. VII. PROP. VII.

If a great Circle in a Spbere iouches two parallel Circles, and anotber great Circle is oblique to them, and touches parallel Circles greater than them, and if their Contact be in the great Circle firt propofed, and there ate afjumed equal Arc's in the oblique Circle, on the fame Side the parallel great Circle; if lafly, tbro' the Points terminating the equal Arc's parallel Circles be drawn: Thefe will intercept unequal Arc's in the fivgt propofed great Circle, whereof that which is nigber to the parallel great Circle, weill be greater than tlat more remote.

Fig. 91. ET the great Circle ABCD, in a Sphere, touch the (a) 6.2 .0 . Circle AE, in the Pcint A; (a) and fo another, as this.
(b) 20. I. there be defcrited the parallel Circles MN, OP, $Q R$. of this. If fay the Arc MO, is greater, than the Arc OQ. (b) For thro' K, , the Poles of the Parallels, defcribe the great Circle SK, cutting the Parallels in the Points T,V:
(c) $15 .{ }^{2}$. (c) Alfo thro' K defcribe the great Circle KE, touching of this. the Parallel AE, in E, and cutting the other parallels in X, Y; yet $f 0$, that thefe Points X, Y may he between the (d) Schol. Points L, T, and V. I. Which may be done. (d) Be15. 2. of this. caufe thro' K , two Circles can be defcribed cutting the Circle AE, whereof one falls between the Arc's KG, KS , and the other withont them; (for if they both thould towch the Circle AE on the fameSide, they would

Book III. The Spbericks of Theodofius.

mutually cut one another near to the Points of Contact, fince they would meet one another. VVhich is abfurd; becaure they interfect in a Point oppofite to K, between the other Pole and the parallel grent Circle. Therefore one of them may touch the Cirle AE , on the right Side of KS, which bifets the Circle AE, and the other on the left Side, falling between KG; and KS: as is KE. For if it fhould fall without KG, it could not touch the parallel $A E$; becaufe it does not frilt meet $K G$, unlefs in a Point oppofite to K , where they mutually bifeat one another.) If the firf is affumed, the Points X, Y, may fall between the Points L, T, and V, I, fince it may cut both KG, KS, in K . Therefore becaufe in the Superficies of the Sphere within the Perinhery of the Circle MN, the Point K , is affigned, without its Pole S , and from K, three Arc's KV, KY, KI, fall on its Circumference; (e) KV, will be the leaft of them all, and KY leffer (e)Schol. than KI. Again, becaufe in the Superficies of the Sphere ${ }^{\text {2I. }}$. 2 of without the Periphery of the (ircle QR, the Point K, is affigned, without its Pole, and from K , to the Circumference, the three Arc's KT, KX, KL, fall; (f) KT, ${ }^{(f) \text { Schol. }}$ will be the lenft of them all, and KX , leffer than KL . this. Therefure each Arc KI, KL, is greater than KY, or KX. And becaufe a right Line drawn thro' K , and the Center of the Sphere, that is, the common Section of the great Circles GH, EY, cuts the Plan of the parallel QR, without the Sphere, if they be produced on the Side of K, (as in the Demonftration of Prop. 5. of this Book, has been faid,) (g) the Are KY, will be greater than the (g) 4.of Arc KX. (b) But the Arc MO is equal to the Arc KY, this. and the $\operatorname{Arc} O Q$, to the Arc KX; for they are non-con- (b) I3. 2. curing Semicircles, whereof one, is drawn foom A thro of thri. P, and the other from E , thro K , (as is manifeft from Prop. 13. lib. 2. of this.) VVherefore the Arc MO, will be greater than the Arc OQ Q.E.D.

The Spleer cks of Theodoflus. Book III.
THEO. VIII. PROP. VIII.
If a great Circle in a spbere touches two pamullel Circles, and anotber great Circle obliquie to them, touches parallel Circles greater than the firgt mention'd Parallels, and their Contact be in the great Circle firt propofed; and if there be taken in the oblique Circle equal Arc's, on the fame Side of the parallel great Circle, and tbrougb the Points terminating the equal Arc's are defcribed great Circles, which likervife touch the fame Circle that the great Circle firft propoged toucloes, and intercept fimilar Ars's of the Parallels, and bave thofe Semicircles, which tend from the Points of ContaCt, to the Points tergainating the equal Arc's of the oblique Circle, through weibich they are defcribed, fo, tibat they do not meet that Semicircle of the firft propofed great Circle, in which the Contact of ibe oblique Circle between the apparent Pole, and the parallel great Circle is: They intercept unequal Arc's on the Circumferearce of the parallel great Circle, whereof that nigher the great Circle frot propofed, is always greater than that mo, e remote.

Fig. 02. ET the great Circle $A B$, in a Sphere, touch the Cir(a) 6.2. cle $A C$ in $A,(a)$ and Γ_{0} another equal and parallel of this. to 1t and let another great Circle DE, oblique to the two Parallels, touch two greater Parallels; and let the ContaEt, as the loint D , be in the Circle AB ; let BE ,

Book III. The Sphericks of Theodofius.

 DE, affume the equal Arc's FG, GH; and through the Points $\mathrm{F}, \mathrm{G}, \mathrm{H}$, defribe the great Circles $\mathrm{CI}, \mathrm{KL}, \mathrm{MN}$, touching the Parallel AC, in $\mathrm{C}, \mathrm{K}, \mathrm{M}$, and cutting $B E$, the parallel great Circle, in I, L, N, fo that they may intercept fimilar Arc's of the Parallels, and their Semicircles, beginning from the Points $\mathrm{C}, \mathrm{K}, \mathrm{M}$, and paling through $\mathrm{F}, \mathrm{G}, \mathrm{H}$, may not meet the Semicircle AB , beginning from A, and paffing through B. I fay the Arc IL, is greater than the Arc LN. For defcribe through F, G, H, the Parallels PF, QG, RH, cutting the Circle KL , in O, S. (b) Therefore the Arc PQ , will be greater than the Arc $Q R$; (c) to which, fence the Arc's GO, GS, are equal, the Arc GO, will be greater than GS. Make GT, equal to GS, and through T, defcribe the Parallel VT, cutting the Circle MN, in X. And because the common Scetion of the Circles MN, VX, that is, the right Line drawn from the Section X , to the othar Section, cuts off a Segment, beginning from X, and paffing through V, to the other Section, leffer than a Semicircle : (d) (for the great Circle MN, cutting (d) 19. 2. the Parallel VX, and not paffing through its Poles, cuts of this. off a Segment greater than a Semicircle, viz. which is between the parallel great Circle, and the confpicuous Pole, as is the Segment beginning from X , and faffing through A, to the other Section with the (ircle $M N$,) and cuts off from the great Circle $\mathbf{M N}$, a Segment greater than a Semicircle, viz, which beginning from X, paffes through N , to the other Section ; and the Segment XV , is inclin'd to the Segment XM. (For if through N, Y, the Pole of the Parallels, the great Circle YN, is defribed, (s) it will be at right Angles to BE. (s) I5. Io Therefore MN, which is pofited between there two, is of this. inclined to the faid BF, towards the Parts R; and fo reciprocally BE, and its Parallel VX, will be inclin'd towards the fame Parts.) Alpo the Segment beginning from X, and paffing through V, to the other Section, is cut unequally in T, and the leffer part is T.X, as proGently hail be proved. (f) Therefore a right Line TX, is $(f)_{2}$ of leffer than a right Line TF : But the right Line TF, (g) this. is equal to HS ; and fo, as in Lemma Prop. 6 . of this (g) 3 . of Book is demonfrated, the Arc HS is too big to be fimi-ibis.(b) 13.2. lar to the Arc TX. (b) Therefore fince the Arc IL, is of this. Similar to the Arc HS, and the Arc LN, to the Arc TX, the Arc IL will alfo be too big to be fimilar to the Are LN ; whence becaufe they are in the fame Circle, IL will be greater than LN. Q.E.D.

LE MM A. I.

We thus demonstrate that the Arc TX, is leffer than ball the Segment beginning, from X, and paffing thro' V, to the other Section. Throw F, describe the great Cir ale $E Z$, touching the Parallel $A C$, in Z, which is on
(i) School. 15. 2. of this. the right Side of the great Circle Nr: (i). Since from E, two Circles touching $A C$, may be described, one on the left Side of the Circle $N r$, and the other on the right: And EZ will be a Quadrant. For the great Circle $Z \Upsilon$, described taro' Υ, the Pole of the Circle $A C$, (k) 5.2. and Z, the Point of Contact, (k) aldo paffes tyro' the of this. Pole of the Tangent Circle EZ. (l) Wherefore the (l) 9. 2. Circle TZ, will biject the Segments BE, EZ. (m) of this. Therefore since the fe great Circles bifect each other, the, (m) II Ir. Segments beginning from the Point E, and paffing tyro'
of this. 56. I. of and the Pole X, is alfo a Quadrant. Therefore the his. great Circle defcribed from E, as a Pole, with the Di, france EZ, will pals taro' the Points Υ, D. By the fame way of Reafoning $N M$, may be proust to be a Quadrant; and fo the great Circle described from the Pole N_{3}, with the Diffance M, pales thro' 1 , the Pole of the Parallels, and consequently cuts the Arc BD, beyond the Point D, and the Arc $N B$, beyond the Arc $D B$, and fo the Arc XV, beyond the fane, Arc DB: fince the great Circles ZeD, Mr, mutually cut one another in the Pole Υ; and the Point M is beyond the Circle DrZ. But because the great Circle Mr, dram o thro' r, the Pole of the Parallel $A C$, and M, the Point
(a) 5.2 . of this.
(p) 9.2 . of ContaCT, (o) will aldo pals throw' the Pole of the Tana. of this.
gent Circle $M N$; it will pals tho the Poles of the Circles $X V_{3} M N_{2}$ cutting each other in $X ;(p)$ wherefore
fore it will bifect their Segments. Therefore fince it cuts the Segment, beginning from X, and pafing tbro' V, to another Paint in which the Circles $X V, N M$, interfect each cther, beyond the Point V; the $\operatorname{Arc} X V$, is leffer than balf the Serment beginning from X, and pafing thro' V, to the otber Section; whence TX, will be nuich Leffer than balf of the fame Segment. Which was to be demonftrated. That the Point of ContaEt M, is without the great Circle DrZ, we thus demonffrate. Becaufethe Arc of the greateft of the Parallels EB, between E, and the CirclerD, (q) is a Quadrant, as al- (q) Cor: So the Arc of the Same between N, and the Circle ΥM; 1 . . I. of and the Point N, is bejond E, towards B; the Circle this, rM, will be aljo without $r D$; and accordingly M, is witbout YD .

L. M MA II.

Two unequal Magnitudes being given : to find another mean one, which may be commenfurable to any other given Magnitude.

Let $A B, A C$, be two unequal Maynitudes given, and alfo DG any otber; it is required to find another mean one, that is, one greater than $A C$, but leffer than $A B$, and commenfurable to $D G$. In the firft Place, let $D G$, be lefler than $B C$, the excefs between the Magnitudes $A B, A C$; and E, a Multiple of $D G$, the nigheft mreater than AC. Which being granted, E will be leffer than $A B$. For if it was equal, if there lhould be taken from E, a Magnitude equal to $D G$ (which is fuppofed leffer than $\triangle C$) there would fill remain a Multiple of $D G$, greater than $A C$. Therefore E sould not be a Multiple of $D G$, the nigheft greaier than $A C$. Which is abfurd. Wherefore E, is not equal to $A B$, and fo much more will it not be greater. Therefore it is leffer than $A B$, and consequently fince it is alfo greater than $A C$, and commenf urable to $D G$, becaufe it is a Multiple of it, what was propofed is ma= nifeft.

But now let the given Magnitude $D G$, be not lefler than $B C$. Thberefore $D G$, being bifected, and again mains the part DF, ledger than $B C$; lit E be a Multiole of $D E$, the nigher greater than $A C$; than E, will (b) I2. Io. be commenfurable to $D F$: (b) and jo to $D G$. Becaufe both E, and $D C$, are commensurable to $D F$. Again, in the jane manner, as before was demonstrated, E, will be leffer than $A B$. Therefore lince it is alfo greatter than $A C$, and comimenfurable to $D G$, the thine proposed is manifest.

THE. IX, PROP. IX:

If the Pole of Parallel Circles in a sphere, be in the Circumference of a great Circle, zebich two other great Circles crit at right Angles, one of reich Circles is one of the Parallels, and the other oblique to the Pas rallels: And if there are afiumed equal Arc's, in the Periphery of the oblique Circe, wobick are not continuus, but yet are on the fame Side of the parallel great Cis ale, and if thru' the Pole and each of thorpe Points terminating the equal Arc's, great Circles be described; they cut off from the Periphery of the parallel great Circle, wnequal-Arc's, wobereof that wobich is nigher to the great Circle firft proposed, is always greater than that more remote.

Fig. 94. LET A, the Pole of parallel Circles in a Sphere, he 95. in the Circumference of the great Circle AB , which 26. two great Circles BC, DC, cur at right Angles, whereof $B C$, is the parallel great Circle, and $D C$, oblique to the Parallels; in which affume the non-continuus equal (a) 20. 1. Arc's EF, GH: (a) Aid tho the Points E, F, G, H, of this.

BookIII. The Sphericks of Theodofius.

and the Pole A, let there be defcribed the great Circles AEI, AFK, AGL, AHM. I fay the Arc ML, is greater than the Arc K!. For the intermediate Arc FG, is either commenfurable to the equal Arc's EF, GH, or incommensurable. If in the firf place it be commenfub mable, (b) having found the greateft common Meafure (b) 4. 10. X, divide the three Arc's EF, FG, GH, into Parts equal to X ; (c) and through the Points of Divifion, and the $(c) 2$ n. Is Pole A, draw great Circles. Therefore becaufe the Arc's of this. $\mathrm{EQ}, \mathrm{QF}, \mathrm{FP}, \mathrm{E}^{\circ} \mathrm{c}$. are equal, (d) the Arc MR, will ${ }^{(d)} 6$. of be greater than the Arc RL, and RL, greater than $L S$, Eric. Wherefore fince $M R$, is greater than $K V$, and RL, greater than VI, the Whole ML, will be greater than the Whole KI ; which was proposed.

Now let the intermediate Arc FG, be incommenfusable to the Are's EF, GH: I fay the Arc ML, is greater than the Arc KI. - For if it be not greater, it is cithen leffer or equal: Firft, if poffible, let ML be leffer than KI : and in KI , affume KN , equal to ML ; (e) (e) 20.1 . ${ }^{\text {b }}$ and thro' \mathbf{N}, A, defćribe the great Circle AON, cutting of this. the Circle CD, in O. Moreover, (by Leinina 2. aforegoing) find the Arc FP, greater than FO, but lefter than FE, and commenfurable to FG ; let alfo GQ , be equal to FP (which is leffer 'than EA; and fo alfo leffer than GH , equal to EF_{5}) and tho' $\mathrm{P}, \mathrm{Q}, \mathrm{A},(f)$ defcribe the $(f) 20.1$ i, great Circles APR, AQS. Therefore because the non- of this. continuous Arc's PF, GQ, are equal, and the internediane Arc FG, is commenfurable to each of them ; the Arc SL, will (as has been demonftrated in the firft Part) be greater than the Arc KR. Therefore aldo it will be meh greater than KN ; and confequently ML, will be much greater than KN : But KN , is equal to ML. Which is abfurd. Therefore ML, is not leffer than KI.

Lastly, let, if poffible, the Arc ML, be equal to KI. And having bifected the Arc's EF, GH, in the Points $\mathrm{N}, \mathrm{O},(g)$ defrribe tho'. N, O, A, the great Circles (g) 20. i. ANP, AOQ. (b) Therefore the Arc MO, will be grea-of this: ter than the Arc QL, and KP, greater than PI. Where- $(b) 6.0$ of fore QL, will be lefter than half of MLK; and KP, this. greater than half KI . Therefore fine ML, KI, are fuppofed equal, QL, will be defer than KP. VVhich is absurd. For becanfe the Arc's FN, GO, equal to half of the equal Arc's EF, $\underset{\mathrm{R}}{\mathrm{GH}} \mathrm{H}_{2}$ QL, cannot be lifer has been fhewn.) Therefore the Arc ML, is not equal to KI: Nor leffer, as has been proved, therefore it is greater. Q. E. D.

SCHOLIUM.

Like as Theodofius in this Propolition, bas demonArated the fome of ron-continuus Arc's, as of continuus ones in Prop. 6, fo in the other Verfion, there are denonfrated in three ather Theorems of non-continuies Arc's what Theodofius bas proved of continunes ones, in Prop. 5. 7. and 8. The firft of the Theorems is this.

I.

If the Pole of parallel Circles in a Sphere be in the Circumference of a great Circle, which two other great Circles cut at right Angles, one of which Circles is one of the Paralles, and the other oblique to the Parallels; and if in this oblique Circle be affumed equal Arc's, which are not continuus, but yet are on the fame Side of the parallel great Circle, and there are defcribed parallel Circles thro' each of the Points terminating the equal Arc's. The Arc's of the great Circle firft propofed, intercepted between the Parallels, will be unequal, and that which is nigher to the parallel great Circle, will always be greater, than that more remote.

Fig. 97.
Let the Pole of parallel Circles in a Spbere, be in the Circumference of the great Circle $A B$, which two other great Circles BC, AC, cut at rigit Angles, and let $B C$, be the paraNel great Circle, and $A C$, oblique to the Parallels. A/Jume the non-continuues Arc's $D E, F G$, equal; and tbro' D, E, F, G, let therebs irawn the Parallels DH, EI, FK, GL. I fay the Arc HI, is greater than the Arc KL. For the intsrmediate ArcEF, is sither

Book III. The Spbericks of Theodofius.

First let either cominenfurable to $D E$, or FG, or not. Firft let (a) 4. 10. it be commensurable. (a) And banning found ' $D E$, greateR common Measure, cut the three the Points of EF, FG, into parts equal to V, Therefore because the continuous Arc's DP, PE, EO, \&c. are equal; th. Arc $H I$, (b) will be greater than the Arc $T l$, and $T 1$, (b) 3. of greater than $1 S$, \&cc. Wherefore fince HT, is greater this. than KQ, anil TI, than QL, the woibole ArC EI, will bs greater, Alan the whole Arc KL, which was propo jed.

Nom let EF, be incommensurable to DE, or FG. I fay the Arc HI, is fill greater than KL. For if it be not greater, it will be either leffer or equal. Firs let it be lefter; and from KL , cut off $K M$, equal to HI ; and tiro' M, draw the parallel MN. Moreover by Lemma 2. Prop. 8. of this Book, find the Arc FO, greater than $F N$, but lefler than $F G$, and commenfurablg to the intermediate Arc EF: And let EP, be equal to $F O$, (whic his leffer than $F G$, and fo all lefter. thaw $D E$, equal to $P G$, and throw' O, P, describe the parallels $O R, P Q$. Therefore becaufe the non-contitus Arc's PE, FO, are equal, and the intermediate Arc EF, is commensurable to each of them, the Arc OI, (as bis been proved juft now) will be greater than the Arc KR. And therefore it will be much greater than KM; and accordingly the Arc H!, will be much greater than KM, But HI is fuppofed equal to KM. Which is abjurd. Therefore $H!$, is not leffor than

KL.

Again, let, if it can be, the Arc HI, be equal to the Arc KL. And having bisected the Arc's DE, FG, in M, N, draw taro' M, N, the Parallels $M O$, NP. (c) (c) 5. of Thererethe Arc HO, will be greater than the Arc this. OI; and KP, greater than PL. Wherefore 101 , will th. lefter than half of HI , and KP, greater than half KL. Whence fine $H I, K L$, are fuppojed equal, OI, will be lifer than KP. Which is abSurd. For Because the Arc's $E M, F N$, (half of the Arc's $D E, F G_{2}$) are equal, ans. not continues, OI cannot be greater than $K P$, as bis been proves. . Therefore the Arc $H I$, is not equal to the Arc KL: But it has been prove in ot to be leffer. Wherefore it will be greater. Q.E.D.

II.

If a great Circle in the Sphere touches another Circle of the Sphere, and another great Circle is otlique to parallel Circles in the fame Sphere, and touches greater Circles than thofe, which the firft propofed great Circle touches, and if their Contact be in the great Circle firft propofed; and there are affumed equal Arc's in the Circumference of the oblique Circle, which are not continuus, but yet are on the fame Side of the parallel great Circle; and Laftly, if thro' the Points terminating the equal Arc's, parallel Circles are defcribed: Thefe cut off unequal Arc's from the great Circle firft propofed, whereof that, which is nigher to the parallel great Circle, will always be greater than that more remote.

This Theorem is dimonfrated from Prop. 7. of this Book, in the fame manner as the precedent Theorem was demonfirated from Prop. 5. So that the two great Circles $A B, A C$, of the precedent Theorem, do touch two Parallels, as in Prop. 7. of this Book, is faid. Tho reft of the ConAruction does not differ from the ConAruction of the Figure of the preceding Theorem, \&c.

III.

If a great Circle in a Sphere, touches another Circle of the Sphere, and fome other great Circle oblique to the Parallel Circles, touches greater Circles than thofe, which the great Circle firft propofed touches, and if their Contact be in the great Circle firft propofed; and if there are affumed equal Arc's in the Periphery of the oblique Circle, which are not continuus, but yet are on the fame side of the paralle!
great

Book III. The Spbericks of Theodofius. great Circle; and if through the Points termimating the equal Arc's great Circles are defcribed, which likewife touch the fame Circle, which the firft proposed great Circle touches, and intercept fimilar Arc's of the Parallels, and have thole Semicircles which tend from the Points of Contact to the Points terminating the equal Arc's of the oblique Circle, 'tiro' which they are defcribed, fo, that they do not meet with that Semicircle of the firft proposed great Circle, in which the Contact of the oblique Circle between the apparent Pole and the parallel great Circle is: They cut off unequal Arc's from the parallel great Circle, whereof that nigher the great Circle firft propofet, will always be greater than that more remote.

This Theorem is alfo demonstrated from Prop. 8. of this Book, like as Prop. 9. was demonfrated from Prop. 6: So that the great Circles of Prop 9: proceeding from A, do touch a Circle lefter than that which DC ought to touch, E TO.

THE. X. YR OP. X.

If the Pole of parallel Circles in a Sphere be in the Circumference of a great Circle. which two other great Circles cut at right Angles, one of which is one of the Paratlets, and the other oblique to the parallets; and if in this oblique Circle any two Points are taken on the Same Side of the parallel great Circle; it will be, as the Arc of the parallel great Circle intercepted between the first proposed great. Circle, and
the

Tbe Sphericks of Theodofius. Book III. the nearefl great Circle defcribed thro' the aforefaid Pole, and one of the Points, is to the Arc of the oblique Circle intercepted between thofe fame Circles; So is the Arc of the parallel great Circle, intercepted between the two great Circles, defcribed tbro' the Pole andeach of the aforefaid Points, to fome otber Arc wobich is leffer than the Arc of the oblique Circle intercepted betwoeen the aforefaid Points.

Fig. 100. ET A, the Pole of parallel great Circles in a Sphere, 101. be in the Circumference of the great Circle AB , 102, which two other great Circles BD, CD, cut at right Angles, and let BD , be the parallel great Circle, and CD, oblique to the Parallels; in which having any
(a) 30. I. where taken the two Points E,F, (a) defcribe thro E, F, of this. and the Pole A, the great Circles AEG, AFH. I fay as the Arc BH, is to the Arc CF; fo is the Arc HG, to an Arc leffer than.FE. For the Are's CF, FE, are commenfurable, or not. Firft, let them be commenfurable,
(b) 3. 10. and having (b) found P, their greateft common meafure, divide the Arc's $C F, E F$, into Arc's, equal to that
(c) 20. I. greateft Meafnre, (c) and through the Pole A, and the this. Points of Divifion, draw the great Circles IM, KN, LO Therefore becaufe the continuus Arc's CL, I.K, KF,
(d) 6. of FI, IE, are equal, the $\mathrm{Arc} \mathrm{BO},(d)$ will be greater than
his. the $\operatorname{Arc} \mathrm{ON}$, and ON , greater than $\mathrm{NH}, \mathrm{Sog}^{3} \mathrm{c}$. There-
(8) 8. 5. fore the Proportion of BO, to CL, () will be greater than the Proportion of ON to LK; and the Proportion of OM, to LK, will be greater than of NH , to KF , $59^{\circ} \mathrm{c}$. Wherefore fince there are feveral Mangnitades, as $\mathrm{BO}, \mathrm{ON}, \mathrm{NH}$, and the fame Number of feveral others, as CL, LK, KF, and the Proportion of the firf BO , to the firf CL , is greater than of the Second ON, to the Second LK; and the Proportion of the Second ON: to the Second LK, is greater than of the Third HN , to the Thid KF; the (f) 34. 5. Proportion of BH , to $\mathrm{CF}_{2}(f)$ will be greater than of fore the Proportion of BH to CF, is much greater than the Proportion of HM, to FI: (b) But ffill the Propor-(b) 34.5. tion of HM , to FI, is greater than the Proportion of $H G$, to EF; becaure the Arc's HM, MG, are equal in Number to the Arc's FI, IE, (i) and the proportion of $(i) 8.5$. the finf HM, to tbe filf FI, is greater than the fecond MG, to the fecond IE, as has been faid. Therefore the Proportion of BH , to CF, is much greater than of HG , to FE. Let it be as BH , to CF ; fo is HG , to P . Therefore the Propotion of $H G$ to P, will be alfo greater than of HG, to FE; (k) and accordingly the $\operatorname{Arc} \mathrm{P}$, will $(k) \mathrm{ro}$. be leffer than the Arc FE. Wherefore as the $\operatorname{Arc} \mathrm{BH}$, is to the Arc CF; fo is the Arc HG, to the Arc P, leffer than FE. Q. E. D.

But now let the Are's CF, FE, be incommenfurable. I fay fill, as the Arc BH, is to the Arc CF; fo is the Arc $\mathrm{HG}_{\text {, }}$ to an Arc lefler than EF. For if it be not fo, it will Be , as BH , is to CF ; fo_{0} is HG , either to an Arc greater than EF , or to the Arc EF , itfelf. Firft, let it be, if poffible, as BH , is to CF ; fo is HG , to the Arc $\mathrm{FI}_{\text {, }}$ greater than the Arc FE.

Now find by Lemina 2. of Prop 8. of this Book, the Arc FK, greater than FE, but leffer than FI, and commenfurat le to CF; (l) then draw thitough K, and the (l) 20 . Ic Pole A, the great CircleKL. Therefore becaufe the Arc's of this CF, FK, are commenfurable: It will be, as BH , is to CF; fo is HL, to an Arc leffer than FK: But as BH, is to CF; fo is HG, to FI. Therefore alfo it will be, as HG , is to FI ; fo is HL, to an Arc, leffer than the Are FK : And by permutation, as HG, is to HL ; fo is FI, to an Arc leffer than the Arc FK. But HG, is leffer than HL. Therefore the Arc FI, will alfo be leffer than that Arc leffer than FK, the VVhole than the Part. VVhich is abfurd. Therefore it is not, as BH , is to CF; fo is HG_{2}, to an Arc greater than the Arc FE.

Let it be again, if poffible, as BH, is to CF; fo is HG, to FE. The Arc FE being bifected in I, (m) defrribe through I, and the Pole A, the great Circle IK. (m) 20.1 : of this. Therefore becaufe the continuus Arc's Fi, IE, are equal, HK , (n) will be greater than KG ; and confequently $(n) 6$. of HK , will be greater than half HC. (0) Wherefore the t bis.

Proportion (o) 8. 5. FI; to is the whole Arc HG, to the whole Arc FE. Therefore alfo the Proportion of HK , to FI, will be greater than of BH , to FE. But as HG , is to FE ; fo is BH , to CF. Therefore the Proportion of HK , to FI ,
(q) ro. 5 . will be greater than of BH , to CF ; (q) and fo the Arc HK , to an Arc greater than FI , will be as BH , to CF. Which is abfurd. For it was juft now proved that the ArcBH , to the Arc CF, cannot be, as the $\operatorname{Arc} \mathrm{HK}$, to an Arc greater than FI. Therefore it is not, as BH , is to CF; fo is HG, to FE: Neither, as has already been demonftrated, is it, as BH , is to CF ; fo is HG , to an Arc greater than FE . Therefore as BH , is to CF ; fo will $H G$, be to an Arc, leffer thani the Arc FE. Q. E. D.

CORALLARY。

From hence, it is manifeft, that the Arc BH , has a
(r) 10 of greater Proportion to the Arc CF, than the Arc HG, has this. to the Arc FE. (r) For fince it is as BH , is to CF ; fo
(s) 8.5 . is HG , to an Arc, leffer than the Arc FE: (s) And the Arc HG, to an Arc leffer than FE, has a greater Proportion than to FE; BH, will alfo have a greater Proportion to CF , than HG , to FE .

THEO. XI. P R O P. XI.

If the Pole of parallel Circles, in a splere, be in the Ciriumference of a great Circle, which two other Circles cut at right Angles, zebereof one is one of the Parallels, and the otber oblique to the Parallels; and of anotber great Circle pafjing tbro' the Pales of the Parallels cuts the oblique Circle between the parallel grcat Circle, and that Parallel wbich tbe oblique Circle toucb- the Diameter of the laft mentioned Parallel, a greater Ratio, than that Arc of the parallel great Circle intercepted between the great Circle firft propofed, and the great Circle paffing thro' the Poles of the Parallels, bas to the Arc of the oblique Circle in. tercepted between the fame Circles.

1 ET A, the Pole of parallel Circles in a Sphere, be Fig. $103{ }^{\circ}$ in the Circumference of the great Circle $A B$, which two other great Circles BC, DE, cut at right Angles, whereof BC , is the parallel great Cirle and BE , oblique to the Parallels touching the Parallel DF. Allo thro' the Pole A, let there be defcribed another great Circle $A E$ cutting $D E$, in the Point E, between $B C$ the parallel great Circle, and the Patallel DF, which the oblique Eircle touches: I fay the Diameter of the Sphere to the Diameter of the Parallel DF, has a greater Ratio than the Are BC, has to the Arc DE. For let the right Line AG be the common Section of the Circles $A B, A E$; and $B G$ the common Scetion of the Circles $A B B C$; then AG, BG, will be Semidiameters of them, (a) (be- (a) ri. r: caufe great Circles in a Sphere mutually bifeet each o-of this. ther) and fo of the Sphere, cutting each other in G, the Center of the Sphere, and of the great Circles. Alfo let DL, be the common Section of the Circles $A B, D E$, which alro will be a Diameter of the Sphere paffing thro' G. Again, let DM, be the common Section of the Circles $\mathrm{AB}, \mathrm{D}^{5}$: then DM , will be a Diameter of the Circle DF, (b) hecaufe the Circle AB, paffes thro' (b) 15 . is the Poles of the Paraliel DF. Alfo let FN, CG, be of this. the common Sections of the (ircles $D F, B C$, with the Circle AE. From the Pole A, with the diftance AE, defcribe the Parallel OE, and let OH, EH, be the conimon Sections of it, with the Circles $A B, A E$; and then $\mathrm{FN}, \mathrm{EH}, \mathrm{CG}$, will be Semidiameters of the Circles $\mathrm{DF}, \mathrm{OE}, \mathrm{BC}$, (c) hecaufe the great Circle AE bifects (c) is. if them thro their Poles; and fo the common Sections are of this. Diameters meeting the Diameters $\mathrm{DM}_{2} \mathrm{OH}_{2} \mathrm{BG}_{3}$ in the Centers $\mathrm{N}, \mathrm{H}, \mathrm{G}$. For OH is alfo a Diameter of the (d) 15. I. Circle OE, (d) innce it bifects the Circle $A B$, thro' of this. the Pole A. Moreover let EG, be the common Seation of the great Circles $A E, E D$, which alfo will be a Diameter paffing through G, the Center of a Sphere. Lafly, let EI , be the common Section of the Circles (e) Io. I. DE, OE. (e) And becaufe the right Line $A G$, drawn of this. through the Poles of the parallel OE, is at right Angles to the Plan of the Parallel, and falls in its Center H; the Angle OHG, (from Def. 3. lib. in. Euclit) in the Triangle GHI, will be a right one; and fo the Angle (f) 19. I. HGI, will be acute. (f) Therefore the Side GI, will be greater, than the Side HI. Cut off the right Line IK, equal to IH. And draw the right Line FK. Again, kecaufe each Circle DE, OE, is at right Angles to the
(g) 19. Ir. Circle AB; (g) EI, their common Section willallo be perpendicular to the fame; and accordingly (from Def. 3 . Zib. 11. Euclid.) the Angles EIH, EIK, will be right ones. Therefore becaufe the two Sides EI, IH, of the Triangle EIH, are equal to the two side EI, $I \mathrm{~K}$, of the Triangle EIK, and contain equal Angles, viz. right ones, as we have demonftrated, the Angles $1 H E, I K E$,
(b) 4. 1. (b) will alfo be equal. But becaufe the Proportion of the right Line GI, to the right Line $I \mathrm{~K}$, is greater than of the Angle IKE, that is, of the Angle OHE, to the
(i) 10.II. Angle IGE, as hy and by we fhall demonftrate: (i)
(k) 15.11. And the Angle OHE, is equal to BGC; (k) (for the right Lines CH, BG, the common Sections of the rafallel Plans, OE, BC, made by the Plan AB , are parallel; as alfo the right Lines EH, CG, the common Sections of the fame Plans, made by the Plan AE) the Proportion of the right Line GI, to the right Line IK, that is, to the right Line H , will be greater than of the
(b) 33.6. Angle BGC, to the Angle DGE: (l) But as the Angle $B G C$, is to the Angle DGE; fo is the Arc BC, to the Arc DE. Therefore the Proportion of the right Line GI, to the right Line IH ; will be greater than of the
(m) 4. 6. Arc BC, to the Arc DE. (m) But as GI, is to IH: ro
(n) 15.5. is GD, to DN, that is, (n) fo is the whole Diameter DL,
(o) 16.11 : to the whole Diameter DM, (o) (for DN OH, the common Sections of the parallel Plans DF, OE, made by the Plan $A B$, are parallel) therefore alfo the Proporsion of DL, the Diameter of the Sphere, to DM, the Diameres

Book III. Tbe Spbericks of Theodofius.
$\mathrm{D}_{\text {iameter of the parallel } \mathrm{DF} \text {, will be greater than of the }}$ Arc BC, to the Arc DE. Q. E. D.

L E M M A.

That the Proportion of the right Line CII, to the right Lins $1 K$, is greater than of the Angle IKE, to tibe Angle IGE, we will prove ins the following Theore:m.

In every right-angled Triangle, if from one of the acute Angles any how to the oppofite Side, be drawn a right Line ; the proportion of this Side to its Segment, which is next to the right Angle, will be greater than the proportion of the acute Angle, which the Line drawn makes with the aforefaid Side, to the other acute Augle of the Triangle.

Lot EGI be a Triangle, right angled, at 1 , and let Fig. IO.* there be any bow drawn from the acute Angle GEI, to to the oppofite Side GI, the right Line EK. I fay the Proportion of the right Line $G I$, to $I K$, is greater than of the acute Angle IKE, to the acute Angle IGE. (p) (p)3r. r. For draw thro' G, the right Lins $G A$, parallel to $E K$, meeting IE, produced in A. Then becaufe the AnEle I, is a right one, the Angle IEG, will be acute, (q) rg. s. and fo $A E G$, obtufe. (q) Therefore the Side $E G$, in the Triangle GE1, is greater than the Side GI: but in the Triangle $A E G$, leffer than the Side AG. Wherefore the Arc of a Circle defiribed from the Conter G, with the Difance $G E$, will cut the right Line $G 1$, pro.luced beyon. 1 , viz. to B, but the right Line $G A$, on this Side A, as in C. Therefore becaufe the Triangle GAE, is greater than the Sector GEC, the Proportion of the Triangle G AF, to the Triangle GE!, (r) will be greater than of the SeCFor GCE, to the Tri- (r) 8. 5: angle GEI: (s) But there is yst a greater Proportion $(s) 8.5$. of the Sector CCE, to the Triangle CEEI, than to the Sector GEB; becaufe the Triangle GEI, is Leffer than the Sector GEB. Therefore the Iroportion of the Triangle $G A E$, to the Triangle $G E 1$, will bemuch greater than of the Sector GCE, to the Sector GEB: (t) Anl ac-(t) 28.5.

The Spbericks of Theodofuas. Book III. cordingly, by compounding, the Proportion of the Tri-
(u) r. 6. angle $\mathrm{G} A 1$, to the Triangle GE1, will be greater than of the Sector GCB, to the Sector GEB: (u) But as the Triangle GAI , is to the Triangle GEI ; fo is the right Line $A I$, to the right Line EI; (x) and as the (x) Cor. I. Sector GCB, is to the Sector GEB; fo is the Angle
33. 6. $B G C$, to the Angle EGE. Therefore the Proportion of Al to to IE, will be greater than of the Angle $B \mathrm{G} A$;
(y) 29.1. that is, (y) than of the Angle IKE, to the Angle IGE: (z) 2. 6. $5(z)$ But as $A I$, to $I E:$ fo is GI , to 1 K . Therefore alSo the Proportion of the right Line GI, to the right Line $1 K$, will be greater than of the Angle IKE, to the Angle IGE. Q. E. D.

SCHOLIUM.

In the other Version the following Theorem is adled.

The fame Things being fuppofed, the Diameter of a Sphere, to the Diameter of that Parallel, defcribed thro' that Point of the oblique Circle, thro' which the great Circle paffing thro' the Pole of the Parallels is drawn, has a leffer Ratio, than the Arc of the parallel great Circle intercepted between the firft propored great Circle, and the great Circle par fling thro' the Poles of the Parallels, to the Arc of the oblique Circle intercepted between the fame Circles.
Fig. 105.
Let the Circles be described (as in Prop. precd.) I Say the Diameter of the Sphere to the Diameter of the Parallel GE, has a lefter Ratio, than of the Arc BC, to the Arc DE. Let GH, BI, be the conman Secton of the Circles $G E, B C$, with the Circle $A B$, which
(a) 15. 1. will be Diameters of them, (a) because $A B$, drawn of this. through their Poles bifects them at right Angles. Therefore BI, will also be a Diameter of the Sphere. (b) 83. 1. And bscaufe the Circle DE, is fuppofed at right Anof this. giles to $A B, D E(b)$ will pass through the Poles of $A B$.

Book III. The Spbericks of Theodofius,

$A B$. In the fains namner $B C$, will pafs througb the Poles of the fame $A B$, fince it is fuppofed at right Angles to it. Wherefore the Point M, wherein they ynutually interfect, will be the Pole of the Circle $A B$; and accordingly the Segment DEL, which is at right Angles to the Circle $A B$, is unequally divided in the Point E, wherein the Circles DE, (GE, interfect one another, and the leffer Part will be ED: (c) Becaufe the (c) 28. 3. Arc's $M D, M L$, are equal, as baving (from the Def. of a Pole) equal Subtenfes. (d) Thersfore the right (d) Schol. Line ED, will be leffer than the right Line EG; and this. of fol fince the Circle GE, is leffer than the Crile DE, the Arc EG, will be greater than the Arc DE. (e) For (e)Lemif a right Line equal to the right Line ED, cuts off ma 6. of 1 from the Circle GE, a greater Arc, than the right this. Line $D E$, from the Circle DE, nuch more will the right Line $E G$, which is greater than $E D$, cut off a greater Arc, \&c. (f) Wherefore the Proportion of the $\operatorname{Arc}(f)$ 8. 5: $B C$, to the Arc GE, will be greater than to the ArG DE. But becaufe, (g) as the ArC EC, is to the whole (g) 15.5° Circumference of t be Circle $B C$; $\int 0$ is the $\operatorname{Arc} G E$, to whole Circumperence of the Circle GE becaufe of the Similitude of the Arc's $B C, G E ;$ and 10 by permutation, as the Arc $B C$, is to the Arc GE ; So is the whole Circumference of the Circle BC, to the Circumference of the Circle GE ; the Proportion of the Circumference of the Circle $B C$, to the Circuniference of the Circle $G E$, will alfo be leffer, than of the Arc $B C_{\text {, }}$ to the Arc $D E$. But as the Circumferenco of the Circle $B C$, is to the Circumference of the Circla GE ; So is the Diameter Bl (which is alfo a Diameter of the Sphere) to the Diamzter GH, as Pappus has demonfirated, and alfowe in Lib. de Circuli Dimenfone Archemidis. Therefore alfo the Propartion of the Diamster of the Sphere EI, to CH, will be leffer than the Arc BC, to the Arc DE. Q. E. D.

> COROLLART.

Hence the fame things being fuppofed, 'the Ratin of the Arc BC, of the parallel great Circle intercepted between the firft propocd great Circle; and the great Circle AC, paffing thro' the Poles of the parallels, to the Arc DE, of the oblique Circle intercepted between the fame Circles is greater than of Radius, to the Sign of the Arc AD, of the great Circle palling tho' the Poles of the parallels; but lefter than Radius to the Sign of AD , the Arc of the firf proposed great Circle intercepted between the Poles of the parallels, and the oblique Circle. For becaufe it has been proved in this Theorem, that the Arc BC, to the Arc DE, has a greater Propor-
(b) Ic. 2. of this. ton than the Diameter of the Sphere to the Diameter of the Parallel GE; (b) but as the Diameter of the Sphere BI, is to GH, the Diameter of the Circle. GE; fo_{0} is the Radius EK, to the Semidianeter GN, that is, to the Sign of the Arc AE.

Therefore alpo the Ratio of the Arc BC, to DE; will be greater than of the Radius BK, $\mathrm{tc} \cdot \mathrm{GN}$, the Sign of the Arc AE.
(i) II. of (i) Again, becaufe it has been demonftrated, that the this. Ratio of the Arc BC, to the Arc DE, is leffer than of the Diameter of the Sphere to the Diameter of the pa-
(k) 15. 5. rallel DF. (k) But as the Diameter of the Sphere BI, is to DF , the Diameter of the parallel DF ; fo is the Radius BK, to DO, the Sign of the Arc AD. Therefore alpo the Proportion of the Arc BC, to the Arc DE , is leffer than of Radius to the Sign of the Are AD.

THE O. XII. PROP. XII.

If two great Circles touch forme one of ϕ arallel Circles in a Sphere, and intercept $\sqrt{2}-$ milar Arc's of the parallels, intercepted between the great Circles; and if amorber great Circle oblique to the parallels, touches greater parallels than tho le, which the frt proposed great Circles touch, and the fame oblique Circle, cuts the fid great Circles in Points pofited between the parallel great Circles, and that circle which the afore- the Sphere, to the Diameter of that Circle, wobich ide oblique Circle touches, has a greater Ratio, than the Arc of the parallel great Circle, intercepted between the firft proposed great Circles, to the Arc of the oblique Circle intercepted between the fame Circles.

I ET the two great Circles AB, CD, in a Sphere, Fig. 106: to the the parallel AC, and intercept fimilar Arc's of the parallel's, intercepted between them; and let another great Circle EF, touch the parallel $E G$, greater than $A C$ in E, which let be oblique to the parallels, and cur the two frt $A B, C D$, between the parallel great Circle HF, and the parallel AC, in the Points I,K. I fay the Ratio of the Diameter of the Sphere, to the Dia meter of the parallel EG , is greater than of the Arc $B D_{;}$to the Arc IK (a) Forthro' L, the Pole of the (a) 20. I. parallels, and the Points E, I, K, defcribe the great $\mathrm{Cir}_{\mathrm{r}}$ of this. cles $\mathrm{LH}, \mathrm{LM}, \mathrm{LN}$, and tiro' K , the parallel KO , cutting the Circle $A B$, in P . (b) Therefore because the this ir of Ratio of the Diameter of the Sphere, to the Diameter of the Cir le $E G$, is greater than of the $\operatorname{Arc} H M$, to (c) Corr. the Arc II and the ratio of the Arc HM, to EI, (c) of this. is greater than MN, to K ; the Ratio of the Diameter of the Sphere to the Diameter of the Circle EG, will alPo be greater than of the Arc MN, to the Arc IK. And hecaure the Arc PK, is fimilar to the Are BD, (From the Hypothefis) (d) and the Arc OK, fimilar to the Arc.MN; and the Arc PI, defer than the Arc OK; the Arc BD, of this. will biro be lefter than the Arc MN; (β) and according- (e) 8. 5. ly the Ratio of the Arc BD, to the Arc IK, will be lefter than of the Arc MN, to the fame Arc IK. Therefore fince it has been proved, that the Ratio of the Dameter of the Sphere, is to the Diameter of the Circle EG, greater thais the Arc MN, to the Arc IK; therefore the Ratio of the Dimeter of the Sphere to the Dimeter of the Circle EG, will be much greater than of the Arc $B D$, to the Are IK. Q.E. D.

SCHOLIUM.

In the Greck Copy it is affirmed that the Ratio of the Diameter of the Sphere, to the Diamneter of the Circle $E G$, is greater than of the Arc $B D$, to the Arc $I K$. Which is clearly mianife ft from our Demonftration. For fince the Diameter of the Spbere has agreater Ratio to the Dianteter of the Circle EG, than of the Arc BD, to the Arc IK; double the Diameter of the Sphere will (f) 8. 5. have a much greater Ratio to the Diameter of the Cire
(f) 8. $5 \cdot{ }^{\circ}$ cle $E G$, than the $\operatorname{Arc} B D$, bas to the Arc $I K$; (f) fince that double the Diameter of the Sp'ere, to the Diameter of the Circle $E G$ bas a greater Ratiotben the Diametter of the Sphere to the Diameter of the fame Circle EG.

THEO. XIII. PR O P. XIII.

If parallel Circles in a Spbere intercept equal Arc's of fome great Circle on each Side the Point, in which ibe great Circle cuts the parallel great Circle; and if tbro the Points terminating the equal Arc's, and the Poles of the Parallels be deforibed great Circles, or if great Circles be defcribed toucbing one of the Parallels, they cut off equal Arc's from the parallel great Circle.

Fig. 107. ET the parallel Circle3 $C D$, EF, in the Sphere AB, 108. Lut off from the great Circle HF, two equal Arc's GC, GF, on each Side the Point G, in which the Cire cle HF, cuts the parallel great Circle BG; and thro' the Yoints C, G, F, draw great Circles either through the Poles of the parallels, as in the firf. Figure, or touch ing one and the fame parallel, as in the laft, cutting the parallel great Circle in $\mathrm{H}_{2} \mathrm{I}$. I fay the Arc's GH, GI, are equal.

Book III. The Spbericks of Theodofius.
equal. For becaufe the Arc's GC, GF, are fuppored equal, (a) the Parallels CD, EF, will be equal. And (a) 17.2 . (b) therefore alfo the Arc's GK, GL, will be equal. (c) Wherefore right Lines, as CK, FL, will be equal; of this. (d) and accordingly in equal Circles CD , FE, they out (c) 3. of off equal Arc's CK, FL; and fo the Arc's CK, FL, will this. be fimilar between themfelves: (e) But the Arc $\mathrm{GH},(\mathrm{d})$ 28. 3. is fimilar, to the Arc CK, and the Arc GI, to the $\operatorname{Arc}(e)$ 10. 2. FL. Therefore alfo the Arc's GH, GI, are fimilar be- of this. tween themfelves; and fince they be in the fame Circle they are equal between themfelves. Q.E. D.

S C HOLIUM.

Hence alfo is manifef, the fame things being fuppofed, that all the Arc's of great Circlesintercepted between the Parallels, are equal between themelves, as are $C H, H E, K \mathrm{G}, \mathrm{GL}, \mathrm{DI}$, IF. For fince the Arc's GC, GH, are equal to the Arc's $\mathrm{GF}, \mathrm{GI},(f)$ right Lines $C H, F I,(f)$ 3. af are equal; (g) and accordingly alfo the Arc's CH, FI, this. will be equal: (b) But the Arc's $K G, D I$, are equal to (g) 28. the Arc CH, and the Arc's LG, EH, to the Arc FI. of this. Iherefore all the \int e fix Arc's will be equal.

THEO. XIV. PR O P. XIV.

If a g eat Circle in a Spberé touches two parallel Circles, and fome other great Circle oblique to tbem touibes two Paiallels greater than the former ones; they cut off from the Parallels unequal Arc's, whereof thofe that be nigber to either of the Poles be too big to be fimilar to toofe more remote.

1. ET the great Circle $A B$ in a Sphere, tonch the Circle Fig. rog. AC ; and a nother geat Circle DE, touch the Circle F. ant cur tie two Parallels GH, BI, in KE. I fay the Arc's KH, EI, are unequal, and KH , which is nigher to the confpicuous Tole, is too big to be fimilar to the Arc EI, more remote; or EB , nigher to tho occult Pole,
(a) 15. 2. is to big too le fimilar to the Arc KG, notere remote. (a) of this. For thro' the Points E,K, defrcibe the great Cirule IE, CN , touching the Circles $A C$, fo that the Semianties proceedirg from C , thro' N , and from A , than' B , máy, not meet: As likewife the Semicircles from L_{2} thro'
(b) [3.2. \mathbf{E}, and from A, thro' I (b) Theretiose the Aucs MH_{3} -f sbss. El, will be fimilar. Wherefore KH , is too bis to be fimilar to EI . In the fame amame bocaufe BN , GK, are finilar, $B E$, nigher to the necult Poie, will be too big to be fimilar to the Arc GK, more remote. Q.E. D.

$F I \sim I S$

ERRATA.

PAge 4 , line 24, for A, tead E. p. 7 1. 12, r. as G. p. 8. 1. IK, dele Common. p. 10, 1. 23. For Semidiameter ro Semidiameters. p. 17, 1. : 4, for it r. is. p. :8, 1. 12, for AE; r. AC. p. 20, 1. 24, for BE, r. DE. p. 22,1.4, for another, ro the other. p. 24, 1. 26, r. a Square. p. 28, 1. 33, for $A D C$, r. ACD. p. 33, r. (d) Schol 8of this. p. 40, 1. 13, r. But. p. 41, I. 16, for E, r. F. p. 47,1. 12, inftead of D.1. E. ibidem, 1. 19,r. If. p. $48,1.32$, for E, r. F. p. 49, 1. 21 , inftead of $D E$, r. GI. p. 52, 1. 24 , for I, r. T. p. 55 , in the Margin, r. (a) ©0. 1. of this. p. $56,1.10$, dele (. p. 59, 1. 19, for it, r. them. ibidem, 1. 3^{2}, for from I thro' G, r. thro' $H . \mathrm{p}, 60,1$. Io, for either. r. both. p. 61,1 is, r. CEFD. p. 79. I. 38 , for EN, r. EV. p. 80 , 1. 2, for MK, r. MP. p. 90, 1, 25, for to r. twoo. p. 92,1. 35, for following, r. falling. p. $97,1.9$, for Sphera, r. Sphera. p. 1102 1. 12, delegreat. p. 117, (cr Archemidis, r. Arclimedis.

